• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DING Xiang-hong, FENG Shi-jin. Two-dimensional migration of contaminants in non-homogeneous cutoff wall considering consolidation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 584-590. DOI: 10.11779/CJGE202203021
Citation: DING Xiang-hong, FENG Shi-jin. Two-dimensional migration of contaminants in non-homogeneous cutoff wall considering consolidation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 584-590. DOI: 10.11779/CJGE202203021

Two-dimensional migration of contaminants in non-homogeneous cutoff wall considering consolidation

More Information
  • Received Date: April 29, 2021
  • Available Online: September 22, 2022
  • Soil-bentonite cutoff walls are widely used in the remediation and control of contaminated sites. Under the action of wall self-weight and lateral earth pressure, the wall shows non-homogeneous along with depth. Based on the bidirectional consolidation theory, a two-dimensional contaminant transport model for a non-homogeneous cutoff wall-aquifer system is developed. The model uses the Gaussian functions to characterize the local non-uniform distribution of the contaminant source and considers the convection-dispersion-adsorption-degradation coupled transport processes of pollutants in a barrier system. With the aid of the boundary conditions and the continuity conditions at the layer interfaces, the transient advection-diffusion equation module of COMSOL multiphysics, a finite element calculation software, is selected for the solution. The influences of concentration distribution of contaminant source and mechanical parameters of wall on contaminant migration are analyzed. The results show that: (1) The homogeneous cutoff wall models will overestimate the wall breakthrough time and underestimate the mass flux through the wall exit. (2) The service performance of a cutoff wall decreases with the increase of the shear strength of the wall material, but it is slightly affected by its compressive strength. (3) Finally, the design idea of the enhanced cutoff wall in the shallow region is given based on the proposed non-homogeneous model.
  • [1]
    刘松玉. 污染场地测试评价与处理技术[J]. 岩土工程学报, 2018, 40(1): 1–37. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17250.shtml

    LIU Song-yu. Geotechnical investigation and remediation for industrial contaminated sites[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 1–37. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17250.shtml
    [2]
    杨玉玲, 杜延军, 范日东, 等. 膨润土系隔离墙材料渗透特性研究综述[J]. 岩土工程学报, 2015, 37(增刊2): 210–216. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16284.shtml

    YANG Yu-ling, DU Yan-jun, FAN Ri-dong, et al. Advances in permeability for bentonite-based hydraulic containment barriers[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 210–216. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16284.shtml
    [3]
    TONG X, LI Y C, KE H, et al. In situ stress states and lateral deformations of soil–bentonite cutoff walls during consolidation process[J]. Canadian Geotechnical Journal, 2020, 57(1): 139–148. doi: 10.1139/cgj-2018-0503
    [4]
    ACAR Y B, HAIDER L. Transport of low-concentration contaminants in saturated earthen barriers[J]. Journal of Geotechnical Engineering, 1990, 116(7): 1031–1052. doi: 10.1061/(ASCE)0733-9410(1990)116:7(1031)
    [5]
    RUBIN H, RABIDEAU A J. Approximate evaluation of contaminant transport through vertical barriers[J]. Journal of Contaminant Hydrology, 2000, 40(4): 311–333. doi: 10.1016/S0169-7722(99)00060-1
    [6]
    LI Y C, CHEN G N, CHEN Y M. Design charts for contaminant transport through slurry trench cutoff walls[J]. Journal of Environmental Engineering, 2017, 143(9): 06017005. doi: 10.1061/(ASCE)EE.1943-7870.0001253
    [7]
    XIE H J, WANG S Y, CHEN Y, et al. An analytical model for contaminant transport in cut-off wall and aquifer system[J]. Journal of Environmental Geotechnics, 2018, 7(7): 1–30.
    [8]
    DING X H, FENG S J, ZHENG Q T, et al. A two-dimensional analytical model for organic contaminants transport in a transition layer-cutoff wall-aquifer system[J]. Computers and Geotechnics, 2020, 128: 103816. doi: 10.1016/j.compgeo.2020.103816
    [9]
    EVANS J C, COSTA M J, COOLEY B. State-of-stress in soil-bentonite slurry trench cutoff walls[J]. Geotechnical Special Publication, 1995(46): 1173–1191.
    [10]
    LI Y C, CLEALL P J, WEN Y D, et al. Stresses in soil–bentonite slurry trench cut-off walls[J]. Géotechnique, 2015, 65(10): 843–850. doi: 10.1680/jgeot.14.P.219
    [11]
    FILZ G M. Consolidation stresses in soil-bentonite backfilled trenches[C]// The 2nd International Congress on Environmental Geotechnics, 1996, Osaka.
    [12]
    YEO S S, SHACKELFORD C D, EVANS J C. Consolidation and hydraulic conductivity of nine model soil-bentonite backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10): 1189–1198. doi: 10.1061/(ASCE)1090-0241(2005)131:10(1189)
    [13]
    FILZ G M, HENRY L B, HESLIN G M, et al. Determining hydraulic conductivity of soil-bentonite using the API filter press[J]. Geotechnical Testing Journal, 2001, 24(1): 61–71. doi: 10.1520/GTJ11282J
    [14]
    MOTT H V, WEBER JR W J. Diffusion of organic contaminants through soil-bentonite cut-off barriers[J]. Research Journal of the Water Pollution Control Federation, 1991: 166–176.
    [15]
    YAN H X, XIE H J, WANG S Y, et al. A two‐dimensional analytical model for organic contaminant transport in cutoff wall and aquifer system[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45(5): 631–647. doi: 10.1002/nag.3179
    [16]
    PARK J K, KIM J Y, MADSEN C D, et al. Retardation of volatile organic compound movement by a soil‐bentonite slurry cutoff wall amended with ground tires[J]. Water Environment Research, 1997, 69(5): 1022–1031. doi: 10.2175/106143097X125722
    [17]
    RUFFING D G, EVANS J C, MALUSIS M A. Prediction of earth pressures in soil-bentonite cutoff walls[C]// GeoFlorida 2010: Advances in Analysis, Modeling & Design, 2010, Florida.
    [18]
    BONAPARTE R, DANIEL D, KOERNER R M. Assessment and Recommendations for Improving the Performance of Waste Containment Systems[M]. Washington D C: US Environmental Protection Agency, 2002.
    [19]
    潘倩. 土—膨润土竖向隔离墙力学行为及其对防污性能影响[D]. 杭州: 浙江大学, 2016.

    PAN Qian. Mechanical Behavior of Soil-Bentonite Cutoff Walls and its Impact on Contaminant Control[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
  • Related Articles

    [1]Predictive model of solute transport processes in fractured rock based on geometric features[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240355
    [2]CHE Dongze, ZENG Zhaotian, LIN Mingyu, YANG Chenglin, FU Huili. Thermal conductivity of calcareous sand and its prediction model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 71-74. DOI: 10.11779/CJGE2023S10010
    [3]LIU Zhixia, GUO Chengchao, ZHU Honghu, CAO Dingfeng, HUANG Rui, WANG Fuming, DONG Pu. Modified Côté-Konrad model for describing relationship between thermal conductivity and water content of coral calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2319-2326. DOI: 10.11779/CJGE20220985
    [4]XU Yunshan, XIAO Zilong, SUN Dean, CHEN Junhao, ZENG Zhaotian. Temperature effects and prediction model of thermal conductivity of soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1180-1189. DOI: 10.11779/CJGE20220243
    [5]ZHOU Yin-kang, YAN Chang-hong, ZHENG Jun, XIE Sheng-hua, XIANG Guo-sheng. Mesoscale model for thermal conductivity of compacted dual-porosity bentonite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1352-1359. DOI: 10.11779/CJGE202107022
    [6]TAN Yun-zhi, YU Bo, HU Xin-jiang, LIU Xiao-ling. Prediction model for thermal conductivity of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 129-133.
    [7]SONG Jian, GAO Guang-yun. Empirical predictive model for seismic displacement of slopes under velocity pulse-like ground motions[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2009-2017.
    [8]XU Guang-xing, YAO Ling-kan, LI Chao-hong, WANG Xiao-fang. Predictive models for permanent displacement of slopes based on recorded strong-motion data of Wenchuan Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1131-1136.
    [9]SU Yong-hua, LI Xiang. Robust reliability analysis for underground structures based on Info-Gap theory[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 227.
    [10]FENG Yuguo, WANG Weiming, LIU Junxi. Robust optimization design of anti-slide piles with prestressed anchor cables[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 515-520.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return