Citation: | LI Xiu-lei, SHI Jian-yong, JIANG Zhao-qi, LI Yu-ping. Thermo-elastoplastic constitutive model for municipal solid waste (MSW) considering temperature effects and fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 523-532. DOI: 10.11779/CJGE202203014 |
[1] |
EID H T, STARK T D, EVANS W D, et al. Municipal solid waste slope failure Ⅰ: waste ans foundation soil properties[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(5): 408–419. doi: 10.1061/(ASCE)1090-0241(2000)126:5(408)
|
[2] |
BLIGHT G. Slope failures in municipal solid waste dumps and landfills: a review[J]. Waste Management & Research, 2008, 26(5): 448–463.
|
[3] |
FENG S J, CHANG J Y, SHI H, et al. Failure of an unfilled landfill cell due to an adjacent steep slope and a high groundwater level: a case of study[J]. Engineering Geology, 2019: 105320.
|
[4] |
SINGH M K, VILAR O M, CARVALHO M F. Application of a hyperbolic model to municipal solid waste[J]. Géotechnique, 2011, 61(7): 533–547. doi: 10.1680/geot.8.P.051
|
[5] |
柯瀚, 郭城, 陈云敏, 等. 考虑降解效应的城市固体废弃物非线性本构模型[J]. 岩土力学, 2014, 35(5): 1217–1223. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405001.htm
KE Han, GUO Cheng, CHEN Yun-min, et al. A nonlinear constitutive model for municipal solid waste considering effects of degradation[J]. Rock and Soil Mechanics, 2014, 35(5): 1217–1223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405001.htm
|
[6] |
陈云敏, 高登, 朱斌. 城市固体废弃物的复合指数应力–应变模型研究[J]. 岩土工程学报, 2009, 31(7): 1020–1029. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13307.shtml
CHEN Yun-min, GAO Deng, ZHU Bin. Composite exponential stress-strain model of municipal solid waste and its application[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1020–1029. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13307.shtml
|
[7] |
李修磊, 李金凤. 城市生活垃圾土的变形强度特性及其应力–应变模型[J]. 水文地质工程地质, 2016, 43(5): 70–75. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201605010.htm
LI Xiu-lei, LI Jin-feng. A study of deformation and strength properties and stress-stain model for municipal solid waste (MSW) [J]. Hydrogeology and Engineering Geology, 2016, 43(5): 70–75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201605010.htm
|
[8] |
SIVAKUMAR BABU G L, LAKSHMIKANTHAN P, SANTHOSH L G. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore[J]. Waste Management (New York, N Y), 2015, 39: 63–70. doi: 10.1016/j.wasman.2015.02.013
|
[9] |
CHOUKSEY S K, SIVAKUMAR BABU G L. Constitutive model for strength characteristics of municipal solid waste[J]. International Journal of Geomechanics, 2015, 15(2): 04014040. doi: 10.1061/(ASCE)GM.1943-5622.0000351
|
[10] |
MACHADO S L, CARVALHO M F, VILAR O M. Constitutive model for municipal solid waste[J]. Journal of Geotechnical and Geoenvironment Engineering, 2002, 128(11): 940–951. doi: 10.1061/(ASCE)1090-0241(2002)128:11(940)
|
[11] |
MACHADO S L, VILAR O M, CARVALHO M F. Constitutive model for long term municipal solid waste mechanical behavior [J]. Computers and Geotechnics, 2008, 35(5): 775–790. doi: 10.1016/j.compgeo.2007.11.008
|
[12] |
MACHADO S L, VILAR O M, CARVALHO M D F, et al. A constitutive framework to model the undrained loading of municipal solid waste [J]. Computers and Geotechnics, 2017, 85(2): 207–219.
|
[13] |
CHANG J Y, FENG S J. A constitutive model for municipal solid waste incorporating bounding surface plasticity and reinforcing effect[J]. Computers and Geotechnics, 2020, 123: 103592 doi: 10.1016/j.compgeo.2020.103592
|
[14] |
LÜ X, ZHAI X, HUANG M. Characterization of the constitutive behavior of municipal solid waste considering particle compressibility[J]. Waste Management (New York), 2017, 69: 3–12. doi: 10.1016/j.wasman.2017.08.003
|
[15] |
李修磊, 施建勇, 李金凤. 考虑纤维加筋作用的城市生活垃圾土弹塑性本构模型[J]. 岩土力学, 2019, 40(5): 1916–1924. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905034.htm
LI Xiu-lei, SHI Jian-yong, LI Jin-feng. Elastoplastic constitutive model for municipal solid waste considering the effect of fibrous reinforcement[J]. Rock and Soil Mechanics, 2019, 40(5): 1916–1924. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905034.htm
|
[16] |
HANSON J L, YESILLER N, OETTLE N K. Spatial and temporal temperature ditributions in municipal solid waste landfills[J]. Journal of Environmental Engineering, 2010, 136(8): 804–814. doi: 10.1061/(ASCE)EE.1943-7870.0000202
|
[17] |
LUETTICH S M, YAFRATE N. Measuring temperatures in an elevated temperature landfills[C]// Geo-Chicago, Chicago, Illinois, United States, 2016, GSP, Chicago.
|
[18] |
STARK T D, AKHTAR K, HUSSAIN M. Stability analysis for a landfill experiencing elevated temperature[C]// Geo-Florida, Orlando, Florida, United States, ASCE, 2010, Orlando.
|
[19] |
姚祖强. 不同温度及含水率条件下垃圾土降解产热研究[D]. 南京: 河海大学, 2021.
YAO Zu-qiang. The Heat Generation of Waste Degradation under Different Initial Temperatures and Water Contents[D]. Nanjing: Hohai University, 2015. (in Chinese)
|
[20] |
LIU X, SHI J, QIAN X, et al. One-dimensional model for municipal solid waste (MSW) settlement considering coupled mechanical-hydraulic-gaseous effect and concise calculation [J]. Waste Management (New York), 2011, 31(12): 2473–2483. doi: 10.1016/j.wasman.2011.07.013
|
[21] |
LALOUI L, CEKEREVAC C. Thermo-plasticity of clays: An isotropic yield mechanism[J]. Computers and Geotechnics, 2003, 30: 649–660. doi: 10.1016/j.compgeo.2003.09.001
|
[22] |
FARVERO V, FERRARI A, LALOUI L. Thermo-mechanical volume change behaviour of Opalinus clay[J]. International Journal of Rock Mechanics Mining Sciences, 2016, 90: 15–25. doi: 10.1016/j.ijrmms.2016.09.013
|
[23] |
姚仰平, 杨一帆, 牛雷. 考虑温度影响的UH模型[J]. 中国科学: 技术科学, 2011, 41(2): 158–169. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201102004.htm
YAO Yang-ping, YANG Yi-fan, NIU Lei. UH model considering temperature effects[J]. Scientia Sinica (Technologica), 2011, 41(2): 158–169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201102004.htm
|
[24] |
ZHOU C, NG C W. A thermomechanical model for saturated soil at small and large strains[J]. Canadian Geotechnical Journal, 2015, 52(8): 1101–1110. doi: 10.1139/cgj-2014-0229
|
[25] |
KARADEMIR T, FROST J D. Micro-scale tensile properties of single geotextile polypropylene filaments at elevated temperature[J]. Geotextiles and Geomembranes, 2014, 42(3): 201–213. doi: 10.1016/j.geotexmem.2014.03.001
|
[26] |
KARIMPOUR-FARD M, MACHADO S L, SHARIATMADARI N, et al. A laboratory study on the MSW mechanical behavior in triaxial apparatus[J]. Waste Management (New York), 2011, 31(8): 1807–1819. doi: 10.1016/j.wasman.2011.03.011
|
[27] |
RAMAIAH B J, RAMANA G V. Study of stress-strain and volume change behavior of emplaced municipal solid waste using large-scale triaxial testing[J]. Waste Management, 2017, 63: 366–379. doi: 10.1016/j.wasman.2017.01.027
|
[28] |
刘祎, 蔡国庆, 李舰, 等. 一个统一描述饱和—非饱和土温度效应的热-弹塑性本构模型[J]. 岩土力学, 2020, 41(10): 3279–3288. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010013.htm
LIU Yi, CAI Guo-qing, LI Jian, et al. A unified thermo elstoplastic constitutive model describing the temperature effect of saturated and unsaturated soils[J]. Rock and Soil Mechanics, 2020, 41(10): 3279–3288. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010013.htm
|
[29] |
SHARIATMADARI N, MACHADO S L, NOORZAD A, et al. Municipal solid waste effective stress analysis[J]. Waste Management (New York), 2009, 29(12): 2918–2930. doi: 10.1016/j.wasman.2009.07.009
|
[30] |
姜兆起. 温度影响下高塑料含量垃圾土强度变形特性试验研究[D]. 南京: 河海大学, 2018.
JIANG Zhao-qi. Experimental Study on the Strength and Deformation Characteristics of MSW with High Plastic Content Under the Influence of Temperature[D]. Nanjing: Hohai University, 2018. (in Chinese)
|