Citation: | FU Ying-peng, LIAO Hong-jian, LÜ Long-long, CHAI Xiao-qing. Hysteretic model for fitting soil-water characteristic curves considering contact angle and grain-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 502-513. DOI: 10.11779/CJGE202203012 |
[1] |
高游, 孙德安, 张俊然, 等. 考虑孔隙比和水力路径影响的非饱和土土水特性研究[J]. 岩土工程学报, 2019, 41(12): 2191–2196. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18065.shtml
GAO You, SUN De-an, ZHANG Jun-ran, et al. Soil-water characteristics of unsaturated soils considering initial void ratio and hydraulic path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2191–2196. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18065.shtml
|
[2] |
ANANDARAJAH A, AMARASINGHE P M. Microstructural investigation of soil suction and hysteresis of fine-grained soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(1): 38–46. doi: 10.1061/(ASCE)GT.1943-5606.0000555
|
[3] |
刘艳, 于建涛. 动态土水特征曲线滞后模型研究[J]. 岩土工程学报, 2021, 43(1): 62–68. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18420.shtml
LIU Yan, YU Jian-tao. Hysteresis model for soil-water characteristic curve under dynamic conditions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 62–68. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18420.shtml
|
[4] |
ARYA L M, PARIS J F. A physicoempirical model to predict the soil moisture characteristic from particle‐size distribution and bulk density data[J]. Soil Science Society of America Journal, 1981, 45(6): 1023–1030. doi: 10.2136/sssaj1981.03615995004500060004x
|
[5] |
FREDLUND M D, WILSON G W, FREDLUND D G. Use of the grain-size distribution for estimation of the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 2002, 39(5): 1103–1117. doi: 10.1139/t02-049
|
[6] |
ASSOULINE S, TESSIER D, BRUAND A. A conceptual model of the soil water retention curve[J]. Water Resources Research, 1998, 34(2): 223–231. doi: 10.1029/97WR03039
|
[7] |
郑方, 刘奉银, 王磊. 粒度对非饱和土土水特征曲线滞回特性的影响[J]. 水利与建筑工程学报, 2019, 17(5): 19–24. https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201905003.htm
ZHENG Fang, LIU Feng-yin, WANG Lei. Influence of unsaturated soil granularity on hysteretic behavior of soil-water characteristic curve[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(5): 19–24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201905003.htm
|
[8] |
陈宇龙, 内村太郎. 粒径对土持水性能的影响[J]. 岩石力学与工程学报, 2016, 35(7): 1474–1482. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607018.htm
CHEN Yu-long Uchimura Taro. Influence of particle size on water retention of soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1474–1482. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607018.htm
|
[9] |
朱青青, 苗强强, 陈正汉, 等. 考虑基质势影响的非饱和土水分运移规律测试系统研制[J]. 岩土工程学报, 2016, 38(增刊2): 240–244. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16687.shtml
ZHU Qing-qing, MIAO Qiang-qiang, CHEN Zheng-han, et al. Development of test system for unsaturated soil water movement law considering influence of matrix potential[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 240–244. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16687.shtml
|
[10] |
姚仰平, 王琳. 影响锅盖效应因素的研究[J]. 岩土工程学报, 2018, 40(8): 1373–1382. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17471.shtml
YAO Yang-ping, WANG Lin. Influence factors for "pot-cover effect"[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1373–1382. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17471.shtml
|
[11] |
VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892–898. doi: 10.2136/sssaj1980.03615995004400050002x
|
[12] |
FREDLUND D G, XING A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521–532. doi: 10.1139/t94-061
|
[13] |
BROOKS R H, COREY A T. Hydraulic properties of porous media and their relation to drainage design[J]. Transactions of the ASAE, 1964, 7(1): 26–0028. doi: 10.13031/2013.40684
|
[14] |
BRUTSAERT W. Some methods of calculating unsaturated permeability[J]. Transactions of the ASAE, 1967, 10(3): 400–404. doi: 10.13031/2013.39683
|
[15] |
ZAPATA C E, HOUSTON W N, HOUSTON S L, et al. Soil–water characteristic curve variability[J]. Advances in Unsaturated Geotechnics, 2000: 84–124.
|
[16] |
ZHAI Q, RAHARDJO H. Quantification of uncertainties in soil–water characteristic curve associated with fitting parameters[J]. Engineering Geology, 2013, 163: 144–152. doi: 10.1016/j.enggeo.2013.05.014
|
[17] |
LIKOS W J, LU N, GODT J W. Hysteresis and uncertainty in soil water-retention curve parameters[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 140(4): 04013050.
|
[18] |
LI P, LI T L, VANAPALLI S K. Prediction of soil-water characteristic curve for Malan loess in Loess Plateau of China[J]. Journal of Central South University, 2018, 25(2): 432–447. doi: 10.1007/s11771-018-3748-1
|
[19] |
BAYAT H, MAZAHERI B, MOHANTY B P. Estimating soil water characteristic curve using landscape features and soil thermal properties[J]. Soil and Tillage Research, 2019, 189: 1–14. doi: 10.1016/j.still.2018.12.018
|
[20] |
TOMASELLA J, HODNETT M G. Estimating soil water retention characteristics from limited data in Brazilian Amazonia[J]. Soil Science, 1998, 163(3): 190–202. doi: 10.1097/00010694-199803000-00003
|
[21] |
PHAM K, KIM D, YOON Y, et al. Analysis of neural network based pedotransfer function for predicting soil water characteristic curve[J]. Geoderma, 2019, 351: 92–102. doi: 10.1016/j.geoderma.2019.05.013
|
[22] |
WEI C, DEWOOLKAR M M. Formulation of capillary hysteresis with internal state variables[J]. Water Resources Research, 2006, 42(7): 260–273.
|
[23] |
LI X S. Modelling of hysteresis response for arbitrary wetting/drying paths[J]. Computers and Geotechnics, 2005, 32(2): 133–137. doi: 10.1016/j.compgeo.2004.12.002
|
[24] |
NIMMO J R. Semiempirical model of soil water hysteresis[J]. Soil Science Society of America Journal, 1992, 56(6): 1723–1730. doi: 10.2136/sssaj1992.03615995005600060011x
|
[25] |
GAN Y, MAGGI F, BUSCARNERA G, et al. A particle–water based model for water retention hysteresis[J]. Géotechnique Letters, 2013, 3(4): 152–161. doi: 10.1680/geolett.13.00046
|
[26] |
MUALEM Y. Extension of the similarity hypothesis used for modeling the soil water characteristics[J]. Water Resources Research, 1977, 13(4): 773–780. doi: 10.1029/WR013i004p00773
|
[27] |
MUALEM Y. Prediction of the soil boundary wetting curve[J]. Soil Science, 1984, 137(6): 379–390. doi: 10.1097/00010694-198406000-00001
|
[28] |
刘艳, 赵成刚, 李舰, 等. 相间交界面对非饱和土应力状态的影响[J]. 力学学报, 2017, 49(2): 335–343. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201702010.htm
LIU Yan, ZHAO Cheng-gang, LI Jian, et al. The influence of interfaces on the stress state in unsaturated soils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 335–343. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201702010.htm
|
[29] |
张鹏程, 汤连生, 姜力群, 等. 基质吸力与含水量及干密度定量关系研究[J]. 岩石力学与工程学报, 2013, 31(增刊1): 2792–2797. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1027.htm
ZHANG Peng-cheng, TANG Lian-sheng, JIANG Li-qun, et al. Research of quantitative relations of matric suction with water content and dry density[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 31(S1): 2792–2797. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1027.htm
|
[30] |
ZHOU A N. A contact angle-dependent hysteresis model for soil–water retention behaviour[J]. Computers and Geotechnics, 2013, 49: 36–42. doi: 10.1016/j.compgeo.2012.10.004
|
[31] |
LIKOS W J, LU N. Hysteresis of capillary stress in unsaturated granular soil[J]. Journal of Engineering Mechanics, 2004, 130(6): 646–655. doi: 10.1061/(ASCE)0733-9399(2004)130:6(646)
|
[32] |
WANG X, LI J. A novel liquid bridge model for estimating SWCC and permeability of granular material[J]. Powder Technology, 2015, 275: 121–130. doi: 10.1016/j.powtec.2015.01.044
|
[33] |
SOLIGNO G, DIJKSTRA M, VAN ROIJ R. The equilibrium shape of fluid-fluid interfaces: derivation and a new numerical method for Young's and Young-Laplace equations[J]. The Journal of Chemical Physics, 2014, 141(24): 244702. doi: 10.1063/1.4904391
|
[34] |
BRAKKE K A. The surface evolver[J]. Experimental Mathematics, 1992, 1(2): 141–165. doi: 10.1080/10586458.1992.10504253
|
[35] |
CHOU T H, HONG S J, SHENG Y J, et al. Drops sitting on a tilted plate: receding and advancing pinning[J]. Langmuir, 2012, 28(11): 5158–5166. doi: 10.1021/la300257t
|
[36] |
BEREJNOV V, THORNE R E. Enhancing drop stability in protein crystallization by chemical patterning[J]. Acta Crystallographica Section D, Biological Crystallography, 2005, 61(12): 1563–1567. doi: 10.1107/S0907444905028866
|
[37] |
THAMPI S P, GOVINDARAJAN R. Minimum energy shapes of one-side-pinned static drops on inclined surfaces[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2011, 84(4): 046304. doi: 10.1103/PhysRevE.84.046304
|
[38] |
SANTOS M J, VELASCO S, WHITE J A. Simulation analysis of contact angles and retention forces of liquid drops on inclined surfaces[J]. Langmuir, 2012, 28(32): 11819–11826. doi: 10.1021/la3019293
|
[39] |
FISHER R A. On the capillary forces in an ideal soil; correction of formulae given by WB Haines[J]. The Journal of Agricultural Science, 1926, 16(3): 492–505. doi: 10.1017/S0021859600007838
|
[40] |
NISHIYAMA N, YOKOYAMA T. Water film thickness in unsaturated porous media: effect of pore size, pore solution chemistry, and mineral type[J]. Water Resources Research, 2021, 57, e2020WR029257.
|
[41] |
SMITH W O, FOOTE P D, BUSANG P F. Packing of homogeneous spheres[J]. Physical Review, 1929, 34(9): 1271–1274. doi: 10.1103/PhysRev.34.1271
|
[42] |
BUTT H J, KAPPL M. Normal capillary forces[J]. Advances in Colloid and Interface Science, 2009, 146(1/2): 48–60.
|
[43] |
黎澄生, 孔令伟, 柏巍, 等. 土–水特征曲线滞后阻塞模型[J]. 岩土力学, 2018, 39(2): 59–604.
LI Cheng-sheng, KONG Ling-Wei, Bai Wei, et al. Hysteresis model of soil-water characteristic curve[J]. Rock and Soil Mechanics, 39(2): 598–604. (in Chinese)
|
[44] |
KASANGAKI G J, MEDERO G M, OOI J Y. Factors Influencing Water Retention Characteristics of Granular Materials[M]// Multiphysical Testing of Soils and Shales, Berlin: Springer, 2013.
|
[45] |
ESMAEELNEJAD L, SIAVASHI F, SEYEDMOHAMMADI J, et al. The best mathematical models describing particle size distribution of soils[J]. Modeling Earth Systems and Environment, 2016, 2(4): 1–11.
|
[46] |
ROSIN P, RAMMLER E. The laws governing the fineness of powdered coal[J]. Journal of the Institute of Fuel, 1933, 7: 29–36.
|
[47] |
井彦林, 王昊, 陶春亮, 等. 非饱和黄土的接触角与孔隙特征试验[J]. 煤田地质与勘探, 2019, 47(5): 157–162. doi: 10.3969/j.issn.1001-1986.2019.05.022
JING Yan-lin, WANG Hao, TAO Chun-liang, et al. Experimental study on contact angle and pore characteristics of unsaturated loess[J]. Coal Geology & Exploration, 2019, 47(5): 157–162. (in Chinese) doi: 10.3969/j.issn.1001-1986.2019.05.022
|
[48] |
陶高梁, 朱学良, 胡其志, 等. 黏性土压缩过程临界孔径现象及固有分形特征[J]. 岩土力学, 2019, 40(1): 81–90. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901005.htm
TAO Gao-liang, ZHU Xue-liang, HU Qi-zhi, et al. Critical pore-size phenomenon and intrinsic fractal characteristic of clay in process of compression[J]. Rock and Soil Mechanics, 2019, 40(1): 81–90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901005.htm
|
[49] |
SHIRAZI M A, BOERSMA L, HART J W. A unifying quantitative analysis of soil texture: improvement of precision and extension of scale[J]. Soil Science Society of America Journal, 1988, 52(1): 181–190. doi: 10.2136/sssaj1988.03615995005200010032x
|
[50] |
SHIRAZI M A, BOERSMA L. A unifying quantitative analysis of soil texture[J]. Soil Science Society of America Journal, 1984, 48(1): 142–147. doi: 10.2136/sssaj1984.03615995004800010026x
|
[51] |
刘建维. 面向润湿作用的黄土结构性及吸附特性试验研究[D]. 西安: 长安大学, 2017.
LIU Jian-wei. Experimental Study on the Structure and Adsorption Characteristics of Loess oriented to Wetting Function[D]. Xi'an: Changan University, 2017. (in Chinese)
|
[52] |
栾茂田, 李顺群, 杨庆. 非饱和土的理论土-水特征曲线[J]. 岩土工程学报, 2005, 27(6): 611–615. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract11688.shtml
LUAN Mao-tian, LI Shun-qun, YANG Qing. Theoretical soil-water characteristic curve for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 611–615. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract11688.shtml
|
[53] |
刘星志, 吴悦, 潘诗婷, 等. 颗粒级配对非饱和红土土-水特征曲线的影响[J]. 水利水运工程学报, 2018(5): 103–110. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201805015.htm
LIU Xing-zhi, WU Yue, PAN Shi-ting, et al. Influences of different grain size contents on soil-water characteristic curve of unsaturated laterite based on fractal theory[J]. Hydro-Science and Engineering, 2018(5): 103–110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201805015.htm
|
[54] |
穆青翼, 党影杰, 董琪, 等. 原状和压实黄土持水特性及湿陷性对比试验研究[J]. 岩土工程学报, 2019, 41(8): 1496–1504. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17975.shtml
MU Qing-yi, DANG Ying-jie, DONG Qi, et al. Water-retention characteristics and collapsibity behaviors: comparison between intact and compacted loesses[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1496–1504. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17975.shtml
|
[55] |
伏映鹏, 廖红建, 刘雪刚, 等. 非线性连续卸荷路径下黄土的强度与变形特性研究[J]. 重庆大学学报, 2021, 44(5): 26–37. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202105004.htm
FU Ying-peng, LIAO Hong-jian, LIU Xue-gang, et al. Study on strength and deformation characteristics of loess under nonlinear continuous unloading path[J]. Journal of Chongqing University, 2021, 44(5): 26–37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202105004.htm
|
1. |
邓东平,石柱,彭文耀. 卸荷损伤效应下开挖边坡稳定性极限平衡分析. 工程地质学报. 2025(01): 327-340 .
![]() | |
2. |
王超,伍永平,赵自豪,曹健,段会强,杨盼盼. 三点弯曲载荷下岩体偏置斜裂隙的应力强度因子. 金属矿山. 2024(02): 114-122 .
![]() | |
3. |
宋洋,马旭琪,赵常青,谢志辉,王富成,牛凯. 隐伏非贯通软弱夹层岩质边坡剪切蠕变特征及稳定性研究. 岩土工程学报. 2024(04): 755-763 .
![]() | |
4. |
徐树强,李营作,姜海涛,王智涛,李斌. 别斯库都克煤矿南帮边坡破坏机理及致灾模式. 露天采矿技术. 2023(02): 13-15+19 .
![]() | |
5. |
于远祥,秦光,陈盼. 露天矿烧变岩高边坡卸荷机理与稳定性研究. 西安科技大学学报. 2023(05): 941-951 .
![]() | |
6. |
李佳航,郭明伟,杨智. 基于边坡下滑方向的传递系数法. 岩石力学与工程学报. 2023(S2): 4261-4270 .
![]() |