Citation: | DUAN Wei, CAI Guo-jun, LIU Song-yu, ZHAO Ze-ning, DONG Xiao-qiang, CHEN Rui-feng. Unified evaluation method for soil liquefaction potential based on modern in-situ piezocone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 435-443. DOI: 10.11779/CJGE202203005 |
[1] |
陈国兴, 孔梦云, 李小军, 等. 以标贯试验为依据的砂土液化确定性及概率判别法[J]. 岩土力学, 2015, 36(1): 9–27. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501002.htm
CHEN Guo-xing, KONG Meng-yun, LI Xiao-jun, et al. Deterministic and probabilistic triggering correlations for assessment of seismic soil liquefaction at nuclear power plant[J]. Rock and Soil Mechanics, 2015, 36(1): 9–27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501002.htm
|
[2] |
蔡国军, 刘松玉, 童立元, 等. 基于静力触探测试的国内外砂土液化判别方法[J]. 岩石力学与工程学报, 2008, 27(5): 1019–1027. doi: 10.3321/j.issn:1000-6915.2008.05.018
CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Evaluation of liquefaction of sandy soils based on cone penetration test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 1019–1027. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.05.018
|
[3] |
SEED H B, IDRISS I M. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971, 97(9): 1249–1273. doi: 10.1061/JSFEAQ.0001662
|
[4] |
JUANG C H, CHEN C H, MAYNE P W. CPTU simplified stress-based model for evaluating soil liquefaction potential[J]. Soils and Foundations, 2008, 48(6): 755–770. doi: 10.3208/sandf.48.755
|
[5] |
ROBERTSON P K, WRIDE C E. Evaluating cyclic liquefaction potential using the cone penetration test[J]. Canadian Geotechnical Journal, 1998, 35(3): 442–459. doi: 10.1139/t98-017
|
[6] |
MOSS R E, SEED R B, KAYEN R E, et al. CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(8): 1032–1051. doi: 10.1061/(ASCE)1090-0241(2006)132:8(1032)
|
[7] |
YOUD T L, IDRISS I M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 297–313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)
|
[8] |
袁晓铭, 曹振中. 基于土层常规参数的液化发生概率计算公式及其可靠性研究[J]. 土木工程学报, 2014, 47(4): 99–108. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201404015.htm
YUAN Xiao-ming, CAO Zhen-zhong. Conventional soils parameters-based liquefaction probabilistic evaluation formula and its reliability analysis[J]. China Civil Engineering Journal, 2014, 47(4): 99–108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201404015.htm
|
[9] |
段伟, 蔡国军, 刘松玉, 等. 多功能参数静力触探在地震液化判别方法中的应用进展研究[J]. 地震工程学报, 2020, 42(3): 764–776. doi: 10.3969/j.issn.1000-0844.2020.03.764
DUAN Wei, CAI Guo-jun, LIU Song-yu, et al. Progress of the application of the multifunctional cone penetration test in the seismic liquefaction discrimination method[J]. China Earthquake Engineering Journal, 2020, 42(3): 764–776. (in Chinese) doi: 10.3969/j.issn.1000-0844.2020.03.764
|
[10] |
AHMAD M, TANG X W, QIU J N, et al. Application of machine learning algorithms for the evaluation of seismic soil liquefaction potential[J]. Frontiers of Structural and Civil Engineering, 2021, 15(2): 490–505. doi: 10.1007/s11709-020-0669-5
|
[11] |
胡记磊, 唐小微, 裘江南. 基于贝叶斯网络的地震液化概率预测分析[J]. 岩土力学, 2016, 37(6): 1745–1752. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606027.htm
HU Ji-lei, TANG Xiao-wei, QIU Jiang-nan. Prediction of probability of seismic-induced liquefaction based on Bayesian network[J]. Rock and Soil Mechanics, 2016, 37(6): 1745–1752. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606027.htm
|
[12] |
ZHAO Z N, DUAN W, CAI G J. A novel PSO-KELM based soil liquefaction evaluation system using CPT and Vs measurements[J]. Soil Dynamics and Earthquake Engineering, 2021. online.
|
[13] |
BRAY J D, SANCIO R B, DURGUNOGLU T, et al. Subsurface characterization at ground failure sites in Adapazari, Turkey[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(7): 673–685. doi: 10.1061/(ASCE)1090-0241(2004)130:7(673)
|
[14] |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/3): 489–501.
|
[15] |
杨锡运, 关文渊, 刘玉奇, 等. 基于粒子群优化的核极限学习机模型的风电功率区间预测方法[J]. 中国电机工程学报, 2015, 35(增刊1): 146–153. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC2015S1023.htm
YANG Xi-yun, GUAN Wen-yuan, LIU Yu-qi, et al. Prediction intervals forecasts of wind power based on PSO-KELM[J]. Proceedings of the CSEE, 2015, 35(S1): 146–153. (In Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC2015S1023.htm
|
[16] |
HUANG G B. An insight into extreme learning machines: random neurons, random features and kernels[J]. Cognitive Computation, 2014, 6(3): 376–390. doi: 10.1007/s12559-014-9255-2
|
[17] |
KENNEDY J, EBERHART R. Particle swarm optimization [C]// Proceedings of ICNN'95-International Conference on Neural Networks, IEEE, 1995, Perth.
|
[18] |
JEFFERIES M G, DAVIES M P. Use of CPTU to estimate equivalent SPT N60[J]. Geotechnical Testing Journal, 1993, 16(4): 458–468. doi: 10.1520/GTJ10286J
|
[19] |
JUANG C H, CHING J, KU C S, et al. Unified CPTu-based probabilistic model for assessing probability of liquefaction of sand and clay[J]. Géotechnique, 2012, 62(10): 877–892. doi: 10.1680/geot.9.P.025
|
[20] |
JUANG C H, CHEN C J, TANG W H, et al. CPT-based liquefaction analysis, Part 1: determination of limit state function[J]. Géotechnique, 2000, 50(5): 583–592. doi: 10.1680/geot.2000.50.5.583
|
[21] |
CAI G J, LIU S Y, PUPPALA A J. Liquefaction assessment using seismic piezocone penetration (SCPTU) test investigations in Tangshan region in China[J]. Soil Dynamics and Earthquake Engineering, 2012, 41: 141–150. doi: 10.1016/j.soildyn.2012.05.008
|
[22] |
KU C S, JUANG C H, CHANG C W, et al. Probabilistic version of the Robertson and Wride method for liquefaction evaluation: development and application[J]. Canadian Geotechnical Journal, 2012, 49(1): 27–44. doi: 10.1139/t11-085
|