• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Dianqing, DING Shaolin, CAO Zijun, TAO Rui. One-stage Bayesian experimental design optimization for measuring soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1212-1221. DOI: 10.11779/CJGE20220263
Citation: LI Dianqing, DING Shaolin, CAO Zijun, TAO Rui. One-stage Bayesian experimental design optimization for measuring soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1212-1221. DOI: 10.11779/CJGE20220263

One-stage Bayesian experimental design optimization for measuring soil-water characteristic curve

More Information
  • Received Date: March 10, 2022
  • Available Online: February 15, 2023
  • The direct measurements of soil-water characteristic curve (SWCC) are often costly and time-consuming. Therefore, only a limited number of test data can be obtained from a single SWCC test, based on which the estimated SWCC inevitably produces uncertainty. It is reasonable to select the experimental scheme (i.e., specify the values of the control variables at measuring points) in order to improve the expected value of information of the measurement data for reducing the uncertainty in the estimated SWCC. A one-stage Bayesian experimental design optimization (OBEDO) approach is developed for SWCC testing exploiting prior knowledge and information of testing apparatus. Discretization of control variables (e.g., matric suction) is used to generate the design space of the candidate experimental scheme, which is specified by the initial measuring points and the additional measuring points to control the general trajectory of SWCC and further reduce the uncertainty in SWCC, respectively. The value of data corresponding to the experimental scheme is quantified by the expected utility. The candidate experimental scheme with the maximum expected utility is identified using the subset simulation optimization (SSO) and treated as the optimal experimental design scheme. The proposed approach is illustrated using an experimental design example. The results show that it provides a rational tool to determine the optimal experiment scheme for SWCC testing considering the uncertainty of soil.
  • [1]
    LU N, LIKOS W J. Unsaturated Soil Mechanics[M]. New Jersey: Wiley, 2004: 40-42.
    [2]
    NAM S, GUTIERREZ M, DIPLAS P, et al. Comparison of testing techniques and models for establishing the SWCC of riverbank soils[J]. Engineering Geology, 2010, 110(1/2): 1-10. http://www.researchgate.net/profile/Panayiotis_Diplas/publication/222581777_Comparison_of_testing_techniques_and_models_for_establishing_the_SWCC_of_riverbank_soils/links/02bfe50dda8e569bcd000000
    [3]
    邢旭光, 赵文刚, 马孝义, 等. 土壤水分特征曲线测定过程中土壤收缩特性研究[J]. 水利学报, 2015, 46(10): 1181-1188. doi: 10.13243/j.cnki.slxb.20150632

    XING Xuguang, ZHAO Wengang, MA Xiaoyi, et al. Study on soil shrinkage characteristics during soil water characteristic curve measurement[J]. Journal of Hydraulic Engineering, 2015, 46(10): 1181-1188. (in Chinese) doi: 10.13243/j.cnki.slxb.20150632
    [4]
    GATABIN C, TALANDIER J, COLLIN F, et al. Competing effects of volume change and water uptake on the water retention behaviour of a compacted MX-80 bentonite/sand mixture[J]. Applied Clay Science, 2016, 121/122: 57-62. doi: 10.1016/j.clay.2015.12.019
    [5]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [6]
    FREDLUND D G, XING A Q. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532. doi: 10.1139/t94-061
    [7]
    陶睿, 李典庆, 曹子君, 等. 含砂黄土土水特征曲线试验研究与参数识别[J]. 武汉大学学报(工学版), 2021, 54(7): 579-587. doi: 10.14188/j.1671-8844.2021-07-001

    (TAO Rui, LI Dianqing, CAO Zijun, et al. Experimental study and parameter identification of soil water characteristic curve of sandy loess[J]. Engineering Journal of Wuhan University, 2021, 54(7): 579-587. doi: 10.14188/j.1671-8844.2021-07-001
    [8]
    WANG L, CAO Z J, LI D Q, et al. Determination of site-specific soil-water characteristic curve from a limited number of test data–A Bayesian perspective[J]. Geoscience Frontiers, 2018, 9(6): 1665-1677. doi: 10.1016/j.gsf.2017.10.014
    [9]
    王林, 李典庆, 曹子君, 等. 基于贝叶斯理论的土水特征曲线模型选择与参数识别方法[J]. 应用基础与工程科学学报, 2019, 27(6): 1269-1284. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201906008.htm

    WANG Lin, LI Dianqing, CAO Zijun, et al. Bayesian approaches for model selection and parameter identification of soil-water characteristic curve[J]. Journal of Basic Science and Engineering, 2019, 27(6): 1269-1284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201906008.htm
    [10]
    SIVIA D, SKILLING J. Data Analysis: A Bayesian Tutorial[M]. Oxford: OUP Oxford, 2006.
    [11]
    张万涛, 余宏明. 正交试验设计方法在库岸滑坡敏感性分析中的应用[J]. 安全与环境工程, 2009, 16(5): 13-16. doi: 10.3969/j.issn.1671-1556.2009.05.004

    ZHANG Wantao, YU Hongming. Applications of orthogonal experiment design to sensitivity analysis of bank landslide[J]. Safety and Environmental Engineering, 2009, 16(5): 13-16. (in Chinese) doi: 10.3969/j.issn.1671-1556.2009.05.004
    [12]
    STRAUB D. Value of information analysis with structural reliability methods[J]. Structural Safety, 2014, 49: 75-85. doi: 10.1016/j.strusafe.2013.08.006
    [13]
    SCHWECKENDIEK T, VROUWENVELDER A C W M. Reliability updating and decision analysis for head monitoring of levees[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2013, 7(2): 110-121. doi: 10.1080/17499518.2013.791034
    [14]
    LI X Y, ZHANG L M, JIANG S H, et al. Assessment of slope stability in the monitoring parameter space[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(7): 04016029. doi: 10.1061/(ASCE)GT.1943-5606.0001490
    [15]
    LI H S. Subset simulation for unconstrained global optimization[J]. Applied Mathematical Modelling, 2011, 35(10): 5108-5120. doi: 10.1016/j.apm.2011.04.023
    [16]
    ZHAI Q, RAHARDJO H. Determination of soil-water characteristic curve variables[J]. Computers and Geotechnics, 2012, 42: 37-43. doi: 10.1016/j.compgeo.2011.11.010
    [17]
    ZHAI Q, RAHARDJO H, SATYANAGA A. Effects of residual suction and residual water content on the estimation of permeability function[J]. Geoderma, 2017, 303: 165-177. doi: 10.1016/j.geoderma.2017.05.019
    [18]
    丁少林. 考虑不确定性的土水特征曲线室内试验设计与含气土现场勘探优化方法[D]. 武汉: 武汉大学, 2022.

    DING Shaolin. Laboratory experimental design of soil-water characteristic curve and site investigation optimization of gassy soils considering uncertainty[D]. Wuhan: Wuhan University, 2022. (in Chinese)
    [19]
    HUAN X, MARZOUK Y M. Simulation-based optimal Bayesian experimental design for nonlinear systems[J]. Journal of Computational Physics, 2013, 232(1): 288-317. doi: 10.1016/j.jcp.2012.08.013
    [20]
    CHIU C F, YAN W M, YUEN K V. Reliability analysis of soil–water characteristics curve and its application to slope stability analysis[J]. Engineering Geology, 2012, 135/136: 83-91. doi: 10.1016/j.enggeo.2012.03.004
    [21]
    BISHOP C M. Pattern Recognition and Machine Learning[M]. New York: Springer, 2006.
    [22]
    ZHOU Y F, THAM L G, YAN R W M, et al. The mechanism of soil failures along cracks subjected to water infiltration[J]. Computers and Geotechnics, 2014, 55: 330-341. doi: 10.1016/j.compgeo.2013.09.009
    [23]
    LI X P, WANG C H, XU J. Surficial stability analysis of unsaturated loess slopes subjected to rainfall infiltration effects[J]. Wuhan University Journal of Natural Sciences, 2006, 11(4): 825-828. http://www.cqvip.com/QK/85480X/200604/22434488.html
  • Cited by

    Periodical cited type(15)

    1. 高睿,关鹏. 复杂地质条件下城市基坑开挖支护与变形研究. 建筑技术. 2025(01): 69-73 .
    2. 王浩. 改进型1+1复合冲孔灌注桩工艺在超深入岩排桩支护工程中的应用. 工程技术研究. 2025(02): 68-70 .
    3. 王旭东. 非平衡荷载下基坑开挖对围护结构的影响分析. 交通科技与管理. 2025(06): 152-155 .
    4. 叶征远. 不同偏压条件下基坑开挖对支护排桩变形特性的影响研究. 东北水利水电. 2024(07): 43-46+62+72 .
    5. 白锦烽. 基坑边坡土钉墙支护效果研究. 河南科技. 2024(17): 61-64 .
    6. 王金伦,刘慧敏,樊晨光. 某输变电工程深基坑降水止水措施及开挖变形研究. 河南科技. 2024(18): 64-68 .
    7. 邓盛双. 邻近公路深基坑围护结构设计与应用分析. 安徽建筑. 2023(01): 165-167 .
    8. 崔巍. 拉森钢板桩在逆作法深基坑中的应用研究. 辽宁省交通高等专科学校学报. 2023(01): 21-25 .
    9. 张秦军. 富水砂层条件下偏压深基坑开挖变形特性研究. 科技与创新. 2023(20): 1-5 .
    10. 赵平. 基于非对称荷载作用下的基坑变形特性研究. 菏泽学院学报. 2022(02): 65-70 .
    11. 刘涛,胡柏春,杨迅. 偏压条件下基坑排桩围护结构工作性状研究. 建筑结构. 2022(S1): 2595-2601 .
    12. 程馨玉,付成华,刘健,蒋林杰. 基坑开挖变形及其对周围建筑的影响分析. 人民珠江. 2022(09): 128-136 .
    13. 周国强,吴明明,王晶,顾文超,徐启良,方敏杰. 偏压作用下坑底土体加固对围护墙变形特性的影响研究. 岩土工程学报. 2022(S1): 201-206 . 本站查看
    14. 张铎,惠海峰,王飞,李龙,谢忠. 偏压荷载下临近地铁深基坑变形特性数值模拟研究. 建筑结构. 2022(S2): 2262-2266 .
    15. 黄汉祥,张海亮,魏宏亮,许野,郑迪,边栋杰,李中浩. 偏压荷载对深基坑变形特性实测分析. 建筑结构. 2022(S2): 2284-2288 .

    Other cited types(8)

Catalog

    Article views (313) PDF downloads (102) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return