• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Yunshan, XIAO Zilong, SUN Dean, CHEN Junhao, ZENG Zhaotian. Temperature effects and prediction model of thermal conductivity of soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1180-1189. DOI: 10.11779/CJGE20220243
Citation: XU Yunshan, XIAO Zilong, SUN Dean, CHEN Junhao, ZENG Zhaotian. Temperature effects and prediction model of thermal conductivity of soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1180-1189. DOI: 10.11779/CJGE20220243

Temperature effects and prediction model of thermal conductivity of soil

More Information
  • Received Date: March 08, 2022
  • Available Online: February 15, 2023
  • Considering the influences of environmental temperature on thermal conductivity of soil is necessary for the optimization design and safety assessment of underground thermal engineering projects. The thermal conductivities of lateritic clay, silt clay, soft clay and bentonite at different temperatures are measured by using the thermal probe method, and the temperature effects of thermal conductivity of soil and its influencing factors are analyzed. A weighted geometric average model considering the temperature effects of thermal conductivity of soil is then established, and is compared with the traditional predictive models. The test results show that the thermal conductivity of soil increases with the increase of temperature, and its temperature effects decrease with the increase of dry density. The temperature has a great influence on the thermal conductivity of unsaturated soil, but a weak influence on the thermal conductivity of dry and saturated soil. The temperature effects of thermal conductivity of soil may depend on the change of the latent heat transfer of vapor. The more the moisture and vapor migration channels that can provide for the latent heat transfer of vapor in soil, the more significant the temperature effects of thermal conductivity of soil. The calculated results show that the proposed weighted geometric average model provides the best fitting to the measured data against the three other traditional models, and can predict well the influences of water content and dry density on the temperature effects of thermal conductivity of soil, while the prediction accuracy of the Tarnawski model, Gori model and Leong model is lower than that of the weighted geometric average model.
  • [1]
    HAN L, YE G L, LI Y H, et al. In situ monitoring of frost heave pressure during cross passage construction using ground-freezing method[J]. Canadian Geotechnical Journal, 2016, 53(3): 530–539. doi: 10.1139/cgj-2014-0486
    [2]
    王驹, 苏锐, 陈伟明, 等. 中国高放废物深地质处置[J]. 岩石力学与工程学报, 2006, 25(4): 649-658. doi: 10.3321/j.issn:1000-6915.2006.04.001

    WANG Ju, SU Rui, CHEN Weiming, et al. Deep geological disposal of high-level radioactive wastes in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 649-658. (in Chinese)) doi: 10.3321/j.issn:1000-6915.2006.04.001
    [3]
    张虎元, 赵秉正, 童艳梅. 混合型缓冲砌块导热性能及其均匀性研究[J]. 岩土力学, 2020, 41(S1): 1-9, 18. doi: 10.16285/j.rsm.2019.0865

    ZHANG Huyuan, ZHAO Bingzheng, TONG Yanmei. Thermal conductivity and uniformity of hybrid buffer blocks[J]. Rock and Soil Mechanics, 2020, 41(S1): 1-9, 18. (in Chinese)) doi: 10.16285/j.rsm.2019.0865
    [4]
    陆浩杰, 孔纲强, 刘汉龙, 等. 黏土热–力学特性对能量桩力学特性的影响[J]. 岩土工程学报, 2022, 44(1): 53-61. doi: 10.11779/CJGE202201004

    LU Haojie, KONG Gangqiang, LIU Hanlong, et al. Influences of thermo-mechanical properties of clay on mechanical responses of energy piles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 53-61. (in Chinese)) doi: 10.11779/CJGE202201004
    [5]
    OCŁOŃ P, BITTELLI M, CISEK P, et al. The performance analysis of a new thermal backfill material for underground power cable system[J]. Applied Thermal Engineering, 2016, 108: 233-250. doi: 10.1016/j.applthermaleng.2016.07.102
    [6]
    ALI M A, BOUAZZA A, SINGH R M, et al. Thermal conductivity of geosynthetic clay liners[J]. Canadian Geotechnical Journal, 2016, 53(9): 1510-1521. doi: 10.1139/cgj-2015-0585
    [7]
    刘晨晖, 周东, 吴恒. 土壤热导率的温度效应试验和预测研究[J]. 岩土工程学报, 2011, 33(12): 1877-1886. http://www.cgejournal.com/cn/article/id/14443

    LIU Chenhui, ZHOU Dong, WU Heng. Measurement and prediction of temperature effects of thermal conductivity of soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1877-1886. (in Chinese)) http://www.cgejournal.com/cn/article/id/14443
    [8]
    ABU-HAMDEH N H, REEDER R C. Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter[J]. Soil Science Society of America Journal, 2000, 64(4): 1285-1290. doi: 10.2136/sssaj2000.6441285x
    [9]
    CÔ TÉ J, KONRAD J M. Assessment of structure effects on the thermal conductivity of two-phase porous geomaterials[J]. International Journal of Heat and Mass Transfer, 2009, 52(3/4): 796-804. http://www.onacademic.com/detail/journal_1000034585683810_f6ca.html
    [10]
    李建东, 王旭, 张延杰, 等. 水蒸气增湿非饱和黄土热湿迁移规律研究[J]. 岩土力学, 2021, 42(1): 186-192. doi: 10.16285/j.rsm.2020.0671

    LI Jiandong, WANG Xu, ZHANG Yanjie, et al. Study of thermal moisture migration of unsaturated loess with water vapor[J]. Rock and Soil Mechanics, 2021, 42(1): 186-192. (in Chinese)) doi: 10.16285/j.rsm.2020.0671
    [11]
    徐永丽, 董子建, 周吉森, 等. 冻融及不同温度下石灰改良盐渍土动力参数研究[J]. 岩土工程学报, 2022, 44(1): 90-97. doi: 10.11779/CJGE202201008

    XU Yongli, DONG Zijian, ZHOU Jisen, et al. Dynamic parameters of lime-improved saline soil under freeze-thaw and different temperatures[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 90-97. (in Chinese)) doi: 10.11779/CJGE202201008
    [12]
    陆森, 任图生. 不同温度下的土壤热导率模拟[J]. 农业工程学报, 2009, 25(7): 13-18. doi: 10.3969/j.issn.1002-6819.2009.07.003

    LU Sen, REN Tusheng. Model for predicting soil thermal conductivity at various temperatures[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(7): 13-18. (in Chinese)) doi: 10.3969/j.issn.1002-6819.2009.07.003
    [13]
    HIRAIWA Y, KASUBUCHI T. Temperature dependence of thermal conductivity of soil over a wide range of temperature (5-75℃)[J]. European Journal of Soil Science, 2000, 51(2): 211-218. doi: 10.1046/j.1365-2389.2000.00301.x
    [14]
    DE VRIES D A. Thermal properties of soils[M]// Physics of the Plant Environment. New York: John Wiley & Sons, 1963: 210–235.
    [15]
    CAMPBELL G S, JUNGBAUER J D JR, BIDLAKE W R, et al. Predicting the effect of temperature on soil thermal conductivity[J]. Soil Science, 1994, 158(5): 307-313. doi: 10.1097/00010694-199411000-00001
    [16]
    TARNAWSKI V R, GORI F, WAGNER B, et al. Modelling approaches to predicting thermal conductivity of soils at high temperatures[J]. International Journal of Energy Research, 2000, 24(5): 403-423. doi: 10.1002/(SICI)1099-114X(200004)24:5<403::AID-ER588>3.0.CO;2-#
    [17]
    TARNAWSKI V R, LEONG W H, BRISTOW K L. Developing a temperature-dependent Kersten function for soil thermal conductivity[J]. International Journal of Energy Research, 2000, 24(15): 1335-1350. doi: 10.1002/1099-114X(200012)24:15<1335::AID-ER652>3.0.CO;2-X
    [18]
    TARNAWSKI V R, LEONG W H, GORI F, et al. Inter-particle contact heat transfer in soil systems at moderate temperatures[J]. International Journal of Energy Research, 2002, 26(15): 1345-1358. doi: 10.1002/er.853
    [19]
    LEONG W H, TARNAWSKI V R, GORI F, et al. Inter-particle contact heat transfer model: an extension to soils at elevated temperatures[J]. International Journal of Energy Research, 2005, 29(2): 131-144. http://www.onacademic.com/detail/journal_1000033835823010_a7ac.html
    [20]
    张延军, 于子望, 黄芮, 等. 岩土热导率测量和温度影响研究[J]. 岩土工程学报, 2009, 31(2): 213-217. http://www.cgejournal.com/cn/article/id/13137

    ZHANG Yanjun, YU Ziwang, HUANG Rui, et al. Measurement of thermal conductivity and temperature effect of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 213-217. (in Chinese) http://www.cgejournal.com/cn/article/id/13137
    [21]
    JOHANSEN O. Thermal Conductivity of Soils[D]. Trondheim: Trondheim University, 1977.
    [22]
    GORI F, CORASANITI S. Theoretical prediction of the soil thermal conductivity at moderately high temperatures[J]. Journal of Heat Transfer, 2002, 124(6): 1001–1008. http://www.onacademic.com/detail/journal_1000039881038510_246d.html
    [23]
    RAWLS W J, BRAKENSIEK D L, SAXTONN K E. Estimation of soil water properties[J]. Transactions of the ASAE, 1982, 25(5): 1316-1320. http://www.onacademic.com/detail/journal_1000040323169810_e328.html
    [24]
    WEBB S W, HO C K. Review of porous media enhanced vapor-phase diffusion mechanisms, models, and data: does enhanced vapor-phase diffusion exist?[J]. Journal of Porous Media, 1998, 1(1): 71-92. http://digital.library.unt.edu/ark:/67531/metadc668347/m2/1/high_res_d/242788.pdf
    [25]
    WOODSIDE W, MESSMER J H. Thermal conductivity of porous media. II. consolidated rocks[J]. Journal of Applied Physics, 1961, 32(9): 1699-1706. http://gji.oxfordjournals.org/external-ref?access_num=10.1063/1.1728420&link_type=DOI
    [26]
    NIKOLAEV I V, LEONG W H, ROSEN M A. Experimental investigation of soil thermal conductivity over a wide temperature range[J]. International Journal of Thermophysics, 2013, 34(6): 1110-1129.
    [27]
    PHILIP J R, DE VRIES D A. Moisture movement in porous materials under temperature gradients[J]. Transactions, American Geophysical Union, 1957, 38(2): 222. http://www.onacademic.com/detail/journal_1000037379730410_e312.html
    [28]
    TANG A M, CUI Y J. Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX80 clay[J]. Canadian Geotechnical Journal, 2005, 42(1): 287-296. http://arxiv.org/abs/0710.1850
    [29]
    ZHU Z C, SUN D A, ZHOU A N, et al. Calibration of two filter papers at different temperatures and its application to GMZ bentonite[J]. Environmental Earth Sciences, 2016, 75(6): 509. http://www.onacademic.com/detail/journal_1000038747726510_dfef.html
    [30]
    王平全, 李晓红. 用热失重法确定水合黏土水分含量及存在形式[J]. 天然气工业, 2006, 26(1): 80-83, 164. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200601025.htm

    WANG Pingquan, LI Xiaohong. Thermal-weightlessness method to determine water content and existing form of hydratable clay[J]. Natural Gas Industry, 2006, 26(1): 80-83, 164. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200601025.htm
  • Cited by

    Periodical cited type(7)

    1. 向成兵. 基于数值模拟的碾压混凝土重力坝坝体开裂原因研究. 水利科技与经济. 2025(01): 64-70 .
    2. 张春顺,林正鸿,杨典森,陈嘉瑞. 考虑初始级配影响的粗粒土非线性弹性模型研究. 岩土力学. 2025(03): 750-760 .
    3. 蔡新合,陈子玉,李国英. 考虑颗粒破碎能耗的堆石料剪胀方程及其应用. 水利水运工程学报. 2024(03): 127-135 .
    4. 庞元恩,石国栋,段煜,姚敏,吉浩泽,罗鸣,李茂彪,李旭. 基于搜索分析深度学习网络(SaNet)的粗粒土级配识别. 岩土工程学报. 2024(09): 1984-1993 . 本站查看
    5. 卢斌,郑雪玉,吴修锋,谢兴华,李艳伟,王照英. 特高堆石坝砾石土心墙非均质缺陷对渗流场影响分析. 水电与抽水蓄能. 2023(03): 22-25+39 .
    6. 熊治茗,杜俊,杨志全,沈兴刚. 筑坝堆石料三轴剪切特性及变形破坏试验研究. 水利与建筑工程学报. 2023(06): 107-113 .
    7. 王明昌. 高砾石土心墙堆石坝过渡料爆破直采技术分析. 新型工业化. 2022(11): 132-135 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return