• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Chenggui, SHU Shanzhi, XIAO Yang, LU Dechun, LIU Hanlong. Fractional-order bounding surface model considering breakage of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1162-1170. DOI: 10.11779/CJGE20220229
Citation: WANG Chenggui, SHU Shanzhi, XIAO Yang, LU Dechun, LIU Hanlong. Fractional-order bounding surface model considering breakage of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1162-1170. DOI: 10.11779/CJGE20220229

Fractional-order bounding surface model considering breakage of calcareous sand

More Information
  • Received Date: March 03, 2022
  • Available Online: June 07, 2023
  • The calcareous sand is widely used as the construction materials in marine engineering. Particle breakage will reduce the strength and dilatancy, and increase the compressibility, which affects the security and stability of the constructions. In this study, the influences of breakage on the position and shape of the critical state line are described by introducing the crushing stress. A unified state-dependent fractional plastic flow rule is established based on fractional differential and state-dependent theory. A fractional-order plasticity boundary surface constitutive model considering the particle breakage and state-dependent behavior of the calcareous sand is established under the framework of the boundary surface plasticity and the critical state theory. The model can simulate the drained triaxial test results of the calcareous sand under different initial densities and confining pressures and reflect the state-dependent behavior under the influences of the particle breakage, which verifies the applicability of the proposed model.
  • [1]
    张家铭, 汪稔, 石祥锋, 等. 侧限条件下钙质砂压缩和破碎特性试验研究[J]. 岩石力学与工程学报, 2005, 24(18): 3327-3331. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200518021.htm

    ZHANG Jiaming, WANG Ren, SHI Xiangfeng, et al. Compression and crushing behavior of calcareous sand under confined compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(18): 3327-3331. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200518021.htm
    [2]
    蔡正银, 侯贺营, 张晋勋, 等. 密度与应力水平对珊瑚砂颗粒破碎影响试验研究[J]. 水利学报, 2019, 50(2): 184-192. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201902004.htm

    CAI Zhengyin, HOU Heying, ZHANG Jinxun, et al. Experimental study on the influence of density and stress level on particle breakage of coral sand[J]. Journal of Hydraulic Engineering, 2019, 50(2): 184-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201902004.htm
    [3]
    吴杨, 崔杰, 李能, 等. 岛礁吹填珊瑚砂力学行为与颗粒破碎特性试验研究[J]. 岩土力学, 2020, 41(10): 3181-3191. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010002.htm

    WU Yang, CUI Jie, LI Neng, et al. Experimental study on the mechanical behavior and particle breakage characteristics of hydraulic filled coral sand on a coral reef island in the South China Sea[J]. Rock and Soil Mechanics, 2020, 41(10): 3181-3191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010002.htm
    [4]
    SHARMA S S, ISMAIL M A. Monotonic and cyclic behavior of two calcareous soils of different origins[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(12): 1581-1591. doi: 10.1061/(ASCE)1090-0241(2006)132:12(1581)
    [5]
    HASSANLOURAD M, SALEHZADEH H, SHAHNAZARI H. Dilation and particle breakage effects on the shear strength of calcareous sands based on energy aspects[J]. International Journal of Civil Engineering, 2008, 6: 108-119. http://www.iust.ac.ir/ijce/article-1-199-en.pdf
    [6]
    GHAFGHAZI M, SHUTTLE D A, DEJONG J T. Particle breakage and the critical state of sand[J]. Soils and Foundations, 2014, 54(3): 451-461. doi: 10.1016/j.sandf.2014.04.016
    [7]
    COOP M R. The mechanics of uncemented carbonate sands[J]. Géotechnique, 1990, 40(4): 607-626. doi: 10.1680/geot.1990.40.4.607
    [8]
    BANDINI V, COOP MR. The influence of particle breakage on the location of the critical state line of sands[J]. Soils and Foundations, 2011, 51(4): 591-600. doi: 10.3208/sandf.51.591
    [9]
    YU F W. Particle breakage and the critical state of sands[J]. Géotechnique, 2017, 67(8): 713-719. doi: 10.1680/jgeot.15.P.250
    [10]
    王刚, 杨俊杰, 王兆南. 钙质砂临界状态随颗粒破碎演化规律分析[J]. 岩土工程学报, 2021, 43(8): 1511-1517. doi: 10.11779/CJGE202108016

    WANG Gang, YANG Junjie, WANG Zhaonan. Evolution of critical state of calcareous sand during particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1511-1517. (in Chinese) doi: 10.11779/CJGE202108016
    [11]
    孙吉主, 罗新文. 考虑剪胀性与状态相关的钙质砂双屈服面模型研究[J]. 岩石力学与工程学报, 2006, 25(10): 2145-2149. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200610029.htm

    SUN Jizhu, LUO Xinwen. Study on a two-yield surface model with consideration of state-dependent dilatancy for calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 2145-2149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200610029.htm
    [12]
    蔡正银, 侯贺营, 张晋勋, 等. 考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J]. 岩土工程学报, 2019, 41(6): 989-995. doi: 10.11779/CJGE201906001

    CAI Zhengyin, HOU Heying, ZHANG Jinxun, et al. Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 989-995. (in Chinese) doi: 10.11779/CJGE201906001
    [13]
    曾凯锋, 刘华北. 考虑颗粒破碎的钙质砂修正邓肯-张E-B模型[J]. 工程地质学报, 2020, 28(1): 94-102. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202001011.htm

    ZENG Kaifeng, LIU Huabei. A modified Duncan-Chang E-B model with particle breakage for calcareous sand[J]. Journal of Engineering Geology, 2020, 28(1): 94-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202001011.htm
    [14]
    王兆南, 王刚, 叶沁果, 等. 考虑颗粒破碎的钙质砂边界面循环本构模型[J]. 岩土工程学报, 2021, 43(5): 886-892. doi: 10.11779/CJGE202105012

    WANG Zhaonan, WANG Gang, YE Qinguo, et al. Cyclic bounding surface model for carbonate sand incorporating particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 886-892. (in Chinese) doi: 10.11779/CJGE202105012
    [15]
    SUMELKA W. A note on non-associated Drucker-Prager plastic flow in terms of fractional calculus[J]. Journal of Teoretical and Applied Mechanics, 2014, 52(2): 571-574. http://www.istic.ac.cn/suoguan/detailed.htm?dbname=xw_qk&wid=0220140600537161
    [16]
    孙逸飞, 高玉峰, 鞠雯. 分数阶塑性力学及其砂土本构模型[J]. 岩土工程学报, 2018, 40(8): 1535-1541. doi: 10.11779/CJGE201808021

    SUN Yifei, GAO Yufeng, JU Wen. Fractional plasticity and its application in constitutive model for sands[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1535-1541. (in Chinese) doi: 10.11779/CJGE201808021
    [17]
    LIANG J Y, LU D C. Reply to discussion on "fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule" [J]. Computers and Geotechnics, 2020, 119: 103282.
    [18]
    梁靖宇, 杜修力, 路德春, 等. 特征应力空间中土的分数阶临界状态模型[J]. 岩土工程学报, 2019, 41(3): 581-587. doi: 10.11779/CJGE201903022

    LIANG Jingyu, DU Xiuli, LU Dechun, et al. Fractional-order critical state model for soils in characteristic stress space[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 581-587. (in Chinese) doi: 10.11779/CJGE201903022
    [19]
    RUSSELL A R, KHALILI N. A bounding surface plasticity model for sands exhibiting particle crushing[J]. Canadian Geotechnical Journal, 2004, 41(6): 1179-1192. http://www.onacademic.com/detail/journal_1000035993372810_ffff.html
    [20]
    DAOUADJI A, HICHER P Y, RAHMA A. An elastoplastic model for granular materials taking into account grain breakage[J]. European Journal of Mechanics - A, 2001, 20(1): 113-137. http://www.xueshufan.com/publication/2074028549
    [21]
    WOOD D M, MAEDA K. Changing grading of soil: effect on critical states[J]. Acta Geotechnica, 2008, 3(1): 3-14. doi: 10.1007%2Fs11440-007-0041-0.pdf
    [22]
    XIAO Y, LIU H L. Elastoplastic constitutive model for rockfill materials considering particle breakage[J]. International Journal of Geomechanics, 2017, 17(1): 04016041. http://www.nstl.gov.cn/paper_detail.html?id=a469ef02be8c4fe536db7be068b73db5
    [23]
    XIAO Y, SUN Z C, STUEDLEIN A W, et al. Bounding surface plasticity model for stress-strain and grain-crushing behaviors of rockfill materials[J]. Geoscience Frontiers, 2020, 11(2): 495-510
    [24]
    XIAO Y, WANG C G, ZHANG Z C, et al. Constitutive modeling for two sands under high pressure[J]. International Journal of Geomechanics, 2021, 21(5): 04021042. http://www.nstl.gov.cn/paper_detail.html?id=106bd04196747daef04c5a38cbce4b43
    [25]
    TONG C X, ZHAI M Y, LI H C, et al. Particle breakage of granular soils: changing critical state line and constitutive modelling[J]. Acta Geotechnica, 2022, 17(3): 755-768. doi: 10.1007/s11440-021-01231-8
    [26]
    孙增春, 汪成贵, 刘汉龙, 等. 粗粒土边界面塑性模型及其积分算法[J]. 岩土力学, 2020, 41(12): 3957-3967. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012015.htm

    SUN Zengchun, WANG Chenggui, LIU Hanlong, et al. Bounding surface plasticity model for granular soil and its integration algorithm[J]. Rock and Soil Mechanics, 2020, 41(12): 3957-3967. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012015.htm
    [27]
    XIAO Y, SUN Y F, HANIF K F. A particle-breakage critical state model for rockfill material[J]. Science China Technological Sciences, 2015, 58(7): 1125-1136. http://www.researchgate.net/profile/Yifei_Sun8/publication/277904256_A_particle-breakage_critical_state_model_for_rockfill_material/links/59be7e27aca272aff2dedaa7/A-particle-breakage-critical-state-model-for-rockfill-material.pdf
    [28]
    XIAO Y, LIU H L, CHEN Y M, et al. Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions[J]. Journal of Engineering Mechanics, 2014, 140(4): 04014002. http://www.nstl.gov.cn/paper_detail.html?id=814b8a6fe8d6b9dc46b7a370be0f3c4c
    [29]
    YIN Z Y, HICHER P Y, DANO C, et al. Modeling mechanical behavior of very coarse granular materials[J]. Journal of Engineering Mechanics, 2017, 143(1): C4016006.
    [30]
    BARDET J P. Bounding surface plasticity model for sands[J]. Journal of Engineering Mechanics, 1986, 112(11): 1198-1217. doi: 10.1061/%28ASCE%290733-9399%281986%29112%3A11%281198%29
    [31]
    LIANG J Y, LU D C, ZHOU X, et al. Non-orthogonal elastoplastic constitutive model with the critical state for clay[J]. Computers and Geotechnics, 2019, 116: 103200. http://www.sciencedirect.com/science/article/pii/S0266352X19302642
    [32]
    BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112. http://www.nrcresearchpress.com/servlet/linkout?suffix=rg4/ref4&dbid=16&doi=10.1139%2FT08-085&key=10.1680%2Fgeot.1985.35.2.99
    [33]
    SUN Y F, SONG S X, XIAO Y, et al. Development and application of state-dependent fractional plasticity in modeling the non-associated behavior of granular aggregates[J]. Acta Mechanica Solida Sinica, 2017, 30(5): 507-519.
    [34]
    WU Y, LI N, WANG X, et al. Experimental investigation on mechanical behavior and particle crushing of calcareous sand retrieved from South China Sea[J]. Engineering Geology, 2021, 280: 105932. http://www.sciencedirect.com/science/article/pii/S0013795220318299
    [35]
    LIU M C, GAO Y F. Constitutive modeling of coarse-grained materials incorporating the effect of particle breakage on critical state behavior in a framework of generalized plasticity[J]. International Journal of Geomechanics, 2017, 17(5): 04016113. http://www.onacademic.com/detail/journal_1000039646245110_f5f4.html
    [36]
    刘恩龙, 陈生水, 李国英, 等. 堆石料的临界状态与考虑颗粒破碎的本构模型[J]. 岩土力学, 2011, 32(增刊2): 148-154. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2024.htm

    LIU Enlong, CHEN Shengshui, LI Guoying, et al. Critical state of rockfill materials and a constitutive model considering grain crushing[J]. Rock and Soil Mechanics, 2011, 32(S2): 148-154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2024.htm
    [37]
    LIU R M, HOU H Y, CHEN Y Y, et al. Elastoplastic constitutive model of coral sand considering particle breakage based on unified hardening parameter[J]. Marine Georesources & Geotechnology, 2022, 40(6): 655-667. http://www.researchgate.net/publication/351604694_Elastoplastic_constitutive_model_of_coral_sand_considering_particle_breakage_based_on_unified_hardening_parameter
  • Cited by

    Periodical cited type(7)

    1. 王识,聂文峰,孙希望,李能. 双层土质边坡稳定性评价的解析上限法. 科技通报. 2023(01): 67-73 .
    2. 王亚辉. 深厚冲积地层护滩堤原型观测技术. 汕头大学学报(自然科学版). 2023(01): 13-22 .
    3. 张博. 软弱路基段路堤填筑速率的控制措施分析. 交通世界. 2023(36): 106-108 .
    4. 朱学亮,邵生俊,沈晓钧,邵帅,刘小康. 裂隙黄土边坡三维稳定性极限分析. 岩土力学. 2022(10): 2735-2743+2756 .
    5. 王迪,王宏权,王晓飞,徐惠民,张飞. 基于极限分析上限法双层土坡稳定性分析. 水利与建筑工程学报. 2020(04): 209-214 .
    6. 贾恺,杨光华,汤连生,李泽源. 软土地基堤围稳定性计算方法. 工程科学学报. 2019(05): 573-581 .
    7. 张惠敏,雷国辉,刘芳雪,张飞. 均质软土地基上土堤稳定性的极限分析方法. 岩土工程学报. 2019(S2): 21-24 . 本站查看

    Other cited types(4)

Catalog

    Article views (357) PDF downloads (103) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return