Citation: | WANG Chenggui, SHU Shanzhi, XIAO Yang, LU Dechun, LIU Hanlong. Fractional-order bounding surface model considering breakage of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1162-1170. DOI: 10.11779/CJGE20220229 |
[1] |
张家铭, 汪稔, 石祥锋, 等. 侧限条件下钙质砂压缩和破碎特性试验研究[J]. 岩石力学与工程学报, 2005, 24(18): 3327-3331. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200518021.htm
ZHANG Jiaming, WANG Ren, SHI Xiangfeng, et al. Compression and crushing behavior of calcareous sand under confined compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(18): 3327-3331. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200518021.htm
|
[2] |
蔡正银, 侯贺营, 张晋勋, 等. 密度与应力水平对珊瑚砂颗粒破碎影响试验研究[J]. 水利学报, 2019, 50(2): 184-192. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201902004.htm
CAI Zhengyin, HOU Heying, ZHANG Jinxun, et al. Experimental study on the influence of density and stress level on particle breakage of coral sand[J]. Journal of Hydraulic Engineering, 2019, 50(2): 184-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201902004.htm
|
[3] |
吴杨, 崔杰, 李能, 等. 岛礁吹填珊瑚砂力学行为与颗粒破碎特性试验研究[J]. 岩土力学, 2020, 41(10): 3181-3191. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010002.htm
WU Yang, CUI Jie, LI Neng, et al. Experimental study on the mechanical behavior and particle breakage characteristics of hydraulic filled coral sand on a coral reef island in the South China Sea[J]. Rock and Soil Mechanics, 2020, 41(10): 3181-3191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010002.htm
|
[4] |
SHARMA S S, ISMAIL M A. Monotonic and cyclic behavior of two calcareous soils of different origins[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(12): 1581-1591. doi: 10.1061/(ASCE)1090-0241(2006)132:12(1581)
|
[5] |
HASSANLOURAD M, SALEHZADEH H, SHAHNAZARI H. Dilation and particle breakage effects on the shear strength of calcareous sands based on energy aspects[J]. International Journal of Civil Engineering, 2008, 6: 108-119. http://www.iust.ac.ir/ijce/article-1-199-en.pdf
|
[6] |
GHAFGHAZI M, SHUTTLE D A, DEJONG J T. Particle breakage and the critical state of sand[J]. Soils and Foundations, 2014, 54(3): 451-461. doi: 10.1016/j.sandf.2014.04.016
|
[7] |
COOP M R. The mechanics of uncemented carbonate sands[J]. Géotechnique, 1990, 40(4): 607-626. doi: 10.1680/geot.1990.40.4.607
|
[8] |
BANDINI V, COOP MR. The influence of particle breakage on the location of the critical state line of sands[J]. Soils and Foundations, 2011, 51(4): 591-600. doi: 10.3208/sandf.51.591
|
[9] |
YU F W. Particle breakage and the critical state of sands[J]. Géotechnique, 2017, 67(8): 713-719. doi: 10.1680/jgeot.15.P.250
|
[10] |
王刚, 杨俊杰, 王兆南. 钙质砂临界状态随颗粒破碎演化规律分析[J]. 岩土工程学报, 2021, 43(8): 1511-1517. doi: 10.11779/CJGE202108016
WANG Gang, YANG Junjie, WANG Zhaonan. Evolution of critical state of calcareous sand during particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1511-1517. (in Chinese) doi: 10.11779/CJGE202108016
|
[11] |
孙吉主, 罗新文. 考虑剪胀性与状态相关的钙质砂双屈服面模型研究[J]. 岩石力学与工程学报, 2006, 25(10): 2145-2149. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200610029.htm
SUN Jizhu, LUO Xinwen. Study on a two-yield surface model with consideration of state-dependent dilatancy for calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 2145-2149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200610029.htm
|
[12] |
蔡正银, 侯贺营, 张晋勋, 等. 考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J]. 岩土工程学报, 2019, 41(6): 989-995. doi: 10.11779/CJGE201906001
CAI Zhengyin, HOU Heying, ZHANG Jinxun, et al. Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 989-995. (in Chinese) doi: 10.11779/CJGE201906001
|
[13] |
曾凯锋, 刘华北. 考虑颗粒破碎的钙质砂修正邓肯-张E-B模型[J]. 工程地质学报, 2020, 28(1): 94-102. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202001011.htm
ZENG Kaifeng, LIU Huabei. A modified Duncan-Chang E-B model with particle breakage for calcareous sand[J]. Journal of Engineering Geology, 2020, 28(1): 94-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202001011.htm
|
[14] |
王兆南, 王刚, 叶沁果, 等. 考虑颗粒破碎的钙质砂边界面循环本构模型[J]. 岩土工程学报, 2021, 43(5): 886-892. doi: 10.11779/CJGE202105012
WANG Zhaonan, WANG Gang, YE Qinguo, et al. Cyclic bounding surface model for carbonate sand incorporating particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 886-892. (in Chinese) doi: 10.11779/CJGE202105012
|
[15] |
SUMELKA W. A note on non-associated Drucker-Prager plastic flow in terms of fractional calculus[J]. Journal of Teoretical and Applied Mechanics, 2014, 52(2): 571-574. http://www.istic.ac.cn/suoguan/detailed.htm?dbname=xw_qk&wid=0220140600537161
|
[16] |
孙逸飞, 高玉峰, 鞠雯. 分数阶塑性力学及其砂土本构模型[J]. 岩土工程学报, 2018, 40(8): 1535-1541. doi: 10.11779/CJGE201808021
SUN Yifei, GAO Yufeng, JU Wen. Fractional plasticity and its application in constitutive model for sands[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1535-1541. (in Chinese) doi: 10.11779/CJGE201808021
|
[17] |
LIANG J Y, LU D C. Reply to discussion on "fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule" [J]. Computers and Geotechnics, 2020, 119: 103282.
|
[18] |
梁靖宇, 杜修力, 路德春, 等. 特征应力空间中土的分数阶临界状态模型[J]. 岩土工程学报, 2019, 41(3): 581-587. doi: 10.11779/CJGE201903022
LIANG Jingyu, DU Xiuli, LU Dechun, et al. Fractional-order critical state model for soils in characteristic stress space[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 581-587. (in Chinese) doi: 10.11779/CJGE201903022
|
[19] |
RUSSELL A R, KHALILI N. A bounding surface plasticity model for sands exhibiting particle crushing[J]. Canadian Geotechnical Journal, 2004, 41(6): 1179-1192. http://www.onacademic.com/detail/journal_1000035993372810_ffff.html
|
[20] |
DAOUADJI A, HICHER P Y, RAHMA A. An elastoplastic model for granular materials taking into account grain breakage[J]. European Journal of Mechanics - A, 2001, 20(1): 113-137. http://www.xueshufan.com/publication/2074028549
|
[21] |
WOOD D M, MAEDA K. Changing grading of soil: effect on critical states[J]. Acta Geotechnica, 2008, 3(1): 3-14. doi: 10.1007%2Fs11440-007-0041-0.pdf
|
[22] |
XIAO Y, LIU H L. Elastoplastic constitutive model for rockfill materials considering particle breakage[J]. International Journal of Geomechanics, 2017, 17(1): 04016041. http://www.nstl.gov.cn/paper_detail.html?id=a469ef02be8c4fe536db7be068b73db5
|
[23] |
XIAO Y, SUN Z C, STUEDLEIN A W, et al. Bounding surface plasticity model for stress-strain and grain-crushing behaviors of rockfill materials[J]. Geoscience Frontiers, 2020, 11(2): 495-510
|
[24] |
XIAO Y, WANG C G, ZHANG Z C, et al. Constitutive modeling for two sands under high pressure[J]. International Journal of Geomechanics, 2021, 21(5): 04021042. http://www.nstl.gov.cn/paper_detail.html?id=106bd04196747daef04c5a38cbce4b43
|
[25] |
TONG C X, ZHAI M Y, LI H C, et al. Particle breakage of granular soils: changing critical state line and constitutive modelling[J]. Acta Geotechnica, 2022, 17(3): 755-768. doi: 10.1007/s11440-021-01231-8
|
[26] |
孙增春, 汪成贵, 刘汉龙, 等. 粗粒土边界面塑性模型及其积分算法[J]. 岩土力学, 2020, 41(12): 3957-3967. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012015.htm
SUN Zengchun, WANG Chenggui, LIU Hanlong, et al. Bounding surface plasticity model for granular soil and its integration algorithm[J]. Rock and Soil Mechanics, 2020, 41(12): 3957-3967. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012015.htm
|
[27] |
XIAO Y, SUN Y F, HANIF K F. A particle-breakage critical state model for rockfill material[J]. Science China Technological Sciences, 2015, 58(7): 1125-1136. http://www.researchgate.net/profile/Yifei_Sun8/publication/277904256_A_particle-breakage_critical_state_model_for_rockfill_material/links/59be7e27aca272aff2dedaa7/A-particle-breakage-critical-state-model-for-rockfill-material.pdf
|
[28] |
XIAO Y, LIU H L, CHEN Y M, et al. Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions[J]. Journal of Engineering Mechanics, 2014, 140(4): 04014002. http://www.nstl.gov.cn/paper_detail.html?id=814b8a6fe8d6b9dc46b7a370be0f3c4c
|
[29] |
YIN Z Y, HICHER P Y, DANO C, et al. Modeling mechanical behavior of very coarse granular materials[J]. Journal of Engineering Mechanics, 2017, 143(1): C4016006.
|
[30] |
BARDET J P. Bounding surface plasticity model for sands[J]. Journal of Engineering Mechanics, 1986, 112(11): 1198-1217. doi: 10.1061/%28ASCE%290733-9399%281986%29112%3A11%281198%29
|
[31] |
LIANG J Y, LU D C, ZHOU X, et al. Non-orthogonal elastoplastic constitutive model with the critical state for clay[J]. Computers and Geotechnics, 2019, 116: 103200. http://www.sciencedirect.com/science/article/pii/S0266352X19302642
|
[32] |
BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112. http://www.nrcresearchpress.com/servlet/linkout?suffix=rg4/ref4&dbid=16&doi=10.1139%2FT08-085&key=10.1680%2Fgeot.1985.35.2.99
|
[33] |
SUN Y F, SONG S X, XIAO Y, et al. Development and application of state-dependent fractional plasticity in modeling the non-associated behavior of granular aggregates[J]. Acta Mechanica Solida Sinica, 2017, 30(5): 507-519.
|
[34] |
WU Y, LI N, WANG X, et al. Experimental investigation on mechanical behavior and particle crushing of calcareous sand retrieved from South China Sea[J]. Engineering Geology, 2021, 280: 105932. http://www.sciencedirect.com/science/article/pii/S0013795220318299
|
[35] |
LIU M C, GAO Y F. Constitutive modeling of coarse-grained materials incorporating the effect of particle breakage on critical state behavior in a framework of generalized plasticity[J]. International Journal of Geomechanics, 2017, 17(5): 04016113. http://www.onacademic.com/detail/journal_1000039646245110_f5f4.html
|
[36] |
刘恩龙, 陈生水, 李国英, 等. 堆石料的临界状态与考虑颗粒破碎的本构模型[J]. 岩土力学, 2011, 32(增刊2): 148-154. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2024.htm
LIU Enlong, CHEN Shengshui, LI Guoying, et al. Critical state of rockfill materials and a constitutive model considering grain crushing[J]. Rock and Soil Mechanics, 2011, 32(S2): 148-154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2024.htm
|
[37] |
LIU R M, HOU H Y, CHEN Y Y, et al. Elastoplastic constitutive model of coral sand considering particle breakage based on unified hardening parameter[J]. Marine Georesources & Geotechnology, 2022, 40(6): 655-667. http://www.researchgate.net/publication/351604694_Elastoplastic_constitutive_model_of_coral_sand_considering_particle_breakage_based_on_unified_hardening_parameter
|
1. |
王识,聂文峰,孙希望,李能. 双层土质边坡稳定性评价的解析上限法. 科技通报. 2023(01): 67-73 .
![]() | |
2. |
王亚辉. 深厚冲积地层护滩堤原型观测技术. 汕头大学学报(自然科学版). 2023(01): 13-22 .
![]() | |
3. |
张博. 软弱路基段路堤填筑速率的控制措施分析. 交通世界. 2023(36): 106-108 .
![]() | |
4. |
朱学亮,邵生俊,沈晓钧,邵帅,刘小康. 裂隙黄土边坡三维稳定性极限分析. 岩土力学. 2022(10): 2735-2743+2756 .
![]() | |
5. |
王迪,王宏权,王晓飞,徐惠民,张飞. 基于极限分析上限法双层土坡稳定性分析. 水利与建筑工程学报. 2020(04): 209-214 .
![]() | |
6. |
贾恺,杨光华,汤连生,李泽源. 软土地基堤围稳定性计算方法. 工程科学学报. 2019(05): 573-581 .
![]() | |
7. |
张惠敏,雷国辉,刘芳雪,张飞. 均质软土地基上土堤稳定性的极限分析方法. 岩土工程学报. 2019(S2): 21-24 .
![]() |