• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YU Hai-tao, WANG Zhi-kun, LIU Zhong-xian. Influence mechanism of permeability coefficient in homogeneously saturated strata on responses of deep tunnels under incidence of SV waves[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 201-211. DOI: 10.11779/CJGE202202001
Citation: YU Hai-tao, WANG Zhi-kun, LIU Zhong-xian. Influence mechanism of permeability coefficient in homogeneously saturated strata on responses of deep tunnels under incidence of SV waves[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 201-211. DOI: 10.11779/CJGE202202001

Influence mechanism of permeability coefficient in homogeneously saturated strata on responses of deep tunnels under incidence of SV waves

More Information
  • Received Date: April 06, 2021
  • Available Online: September 22, 2022
  • For the seismic analysis of underground structures in saturated sites, the coupling effects of pore water and soil skeleton are determined by the permeability coefficient of strata, which is one of the key parameters in the interaction analysis between saturated strata and structures. However, the current researches are usually based on the assumption that the permeability coefficient is zero or infinite, ignoring the permeability of the actual formation, and its influence mechanism is still unclear. Based on the Biot poroelasticity theory, firstly the u-w format model is established for homogeneously saturated strata with different permeability coefficients. According to the distribution ranges of the permeability coefficients corresponding to different types of saturated strata, the analytical expressions for wave velocity of P1, P2 and S waves are derived when the permeability coefficient is finite, zero and infinite respectively, and the influences of variation of the permeability coefficient on the free-field wave velocity is analyzed. In addition, a dynamic analysis model is established for different types of saturated strata and deep tunnels, and the proposed model is verified by providing comparisons with the known solutions of typical examples. Furthermore, the response mechanisms of the tunnel structures and surrounding pore water pressures in four typical saturated strata, including sandstone, pebble soil, sandy soil and silt soil, are investigated under the scenarios of variable permeability coefficients and two extreme values (i.e., zero and infinite). The results show that the propagation velocities of three kinds of waves (P1, P2 and S waves) in different strata all increase with the permeability coefficient k. When k is less than 10-4 m/s, the wave velocity reaches the minimum and is consistent with that of the extreme value k=0. When k is greater than 102 m/s, the wave velocity reaches the maximum and is consistent with that of the extreme value k=∞. More specifically, for the saturated sandstone, the amplitudes of tunnel response and pore water pressure of strata gradually increase with the permeability coefficient and tend to the extreme case with the assumption of k=∞. While for the pebble soil and the sandy soil, the amplitudes of tunnel response and pore water pressure of strata gradually increase with the decrease of the permeability coefficient and tend to the extreme case with the assumption of k=0. What's more, for the saturated strata with permeability coefficient in the range of 10-4 m/s~102 m/s, the dynamic responses of tunnel structures and strata are quite different from those with permeability coefficient of two extreme values, which indicates the assumption that the permeability coefficient is zero or infinite cannot be used in the computational model for this situation. Therefore, the permeability coefficient of saturated strata has a significant influence on the dynamic responses of the tunnel structures and surrounding strata, and should be considered in the seismic design of practical projects.
  • [1]
    黄雨, 叶为民, 唐益群, 等. 上海深厚饱和覆盖土层的动力耦合地震反应分析[J]. 岩土力学, 2002, 23(4): 411–416. doi: 10.3969/j.issn.1000-7598.2002.04.004

    HUANG Yu, YE Wei-min, TANG Yi-qun, et al. Coupled seismic response analysis of deep saturated soil covering layers in Shanghai[J]. Rock and Soil Mechanics, 2002, 23(4): 411–416. (in Chinese) doi: 10.3969/j.issn.1000-7598.2002.04.004
    [2]
    WANG Z H, ZHAO C G, DONG L. An approximate spring-dashpot artificial boundary for transient wave analysis of fluid-saturated porous media[J]. Computers and Geotechnics, 2009, 36(1/2): 199–210.
    [3]
    谷音, 庄舒曼, 卓卫东, 等. 考虑饱和土的地铁车站结构非线性地震反应研究[J]. 岩土力学, 2015, 36(11): 3243–3251. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511028.htm

    GU Yin, ZHUANG Shu-man, ZHUO Wei-dong, et al. Analysis of nonlinear seismic response of subway station considering saturated soil[J]. Rock and Soil Mechanics, 2015, 36(11): 3243–3251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511028.htm
    [4]
    李亮, 吴利华, 王相宝, 等. 基于流固耦合动力模型的饱和土体-隧道体系地震反应研究[J]. 地震工程学报, 2016, 38(6): 862–868. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201606003.htm

    LI Liang, WU Li-hua, WANG Xiang-bao, et al. Seismic response of saturated soil-tunnel system based on fluid-solid coupling dynamic model[J]. China Earthquake Engineering Journal, 2016, 38(6): 862–868. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201606003.htm
    [5]
    LI P, SONG E X. A viscous-spring transmitting boundary for cylindrical wave propagation in saturated poroelastic media[J]. Soil Dynamics and Earthquake Engineering, 2014, 65: 269–283. doi: 10.1016/j.soildyn.2014.06.022
    [6]
    LIU Z X, JU X, WU C Q, et al. Scattering of plane P1 waves and dynamic stress concentration by a lined tunnel in a fluid-saturated poroelastic half-space[J]. Tunnelling and Underground Space Technology, 2017, 67: 71–84. doi: 10.1016/j.tust.2017.04.017
    [7]
    FETTER C W. Applied Hydrogeology[M]. Long Grove: Waveland Press, 1994.
    [8]
    刘中宪, 琚鑫, 梁建文. 饱和半空间中隧道衬砌对平面SV波的散射IBIEM求解[J]. 岩土工程学报, 2015, 37(9): 1599–1612. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509008.htm

    LIU Zhong-xian, JU Xin, LIANG Jian-wen. IBIEM solution to scattering of plane SV waves by tunnel lining in saturated poroelastic half-space[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1599–1612. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509008.htm
    [9]
    HAN B, ZDRAVKOVIC L, KONTOE S. Numerical and analytical investigation of compressional wave propagation in saturated soils[J]. Computers and Geotechnics, 2016, 75: 93–102. doi: 10.1016/j.compgeo.2016.01.019
    [10]
    BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33(4): 1482–1498. doi: 10.1063/1.1728759
    [11]
    WONG H L. Diffraction of P, SV, and Rayleigh waves by surface topography[M]. California: University of California, 1979.
    [12]
    钟启凯. 地下圆形组合衬砌洞室在地震波下的动力反应分析[D]. 长沙: 湖南大学, 2009.

    ZHONG Qi-kai. Dynamic Response Aanalysis of Underground Cylindrical Composite- Lining Cavern Subjected to Seismic Waves[D]. Changsha: Hunan University, 2009. (in Chinese)
    [13]
    LIN C H, LEE V W, TRIFUNAC M D. The reflection of plane waves in a poroelastic half-space saturated with inviscid fluid[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(3): 205–223. doi: 10.1016/j.soildyn.2004.10.009
    [14]
    宋佳. 饱和土场地波动数值模拟方法及其工程应用[D]. 北京: 北京工业大学, 2017.

    SONG Jia. Wave Numerical Method of Saturated Site Soil and its Engineering Application[D]. Beijing: Beijing University of Technology, 2017. (in Chinese)
    [15]
    HASHASH Y M A, HOOK J J, SCHMIDT B, et al. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology, 2001, 16(4): 247–293. doi: 10.1016/S0886-7798(01)00051-7
    [16]
    李瑞山, 袁晓铭, 吴晓阳. 抗震规范等效剪切波速简化算法适用性研究[J]. 地震工程与工程振动, 2018, 38(3): 30–36. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201803004.htm

    LI Rui-shan, YUAN Xiao-ming, WU Xiao-yang. Study on the applicability of simplified equivalent shear wave velocity calculation method in seismic design code[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(3): 30–36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201803004.htm
  • Cited by

    Periodical cited type(5)

    1. 雷国钦,卢勇,戴泽宇,陈青林,张小普. 细粒级尾砂沉降规律及坝体稳定性研究. 有色金属(中英文). 2025(04): 660-667 .
    2. 李庚辉,肖启飞,侯英剑. 某选厂高浓度铁尾矿沉积特性试验. 现代矿业. 2025(04): 217-220 .
    3. 周罕,付俊,陈永贵,余璨,李嘉淇,李艳林. 沟谷上游式尾矿库的水力分选及沉积规律研究. 矿业研究与开发. 2023(08): 147-151 .
    4. 陈青林,戴泽宇,王晓军,李祖贵,谢锦程,廖敏敏. 不同细粒含量尾矿沉降规律与其沉积体孔隙分布特征研究. 中国安全生产科学技术. 2023(12): 79-85 .
    5. 李全明,段志杰,于玉贞,师海,李振涛. 尾矿坝沉积结构特征与性能演化规律研究进展. 中国安全生产科学技术. 2022(02): 6-19+2 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return