Citation: | WANG Xiang, GU Kai, ZHANG Yuping, LU Yu, TANG Chaosheng, SHEN Zhengtao, SHI Bin. Effects of biochar on desiccation cracking characteristics of different soils and their mechanism[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 876-882. DOI: 10.11779/CJGE20220192 |
[1] |
TANG C S, SHI B, LIU C, et al. Experimental investigation of the desiccation cracking behavior of soil layers during drying[J]. Journal of Materials in Civil Engineering, 2011, 23(6): 873-878. doi: 10.1061/(ASCE)MT.1943-5533.0000242
|
[2] |
袁俊平, 殷宗泽. 膨胀土裂隙的量化指标与强度性质研究[J]. 水利学报, 2004, 35(6): 108-113. doi: 10.3321/j.issn:0559-9350.2004.06.019
YUAN Junping, YIN Zongze. Quantitative index of fissure and strength characteristics of fissured expansive soils[J]. Journal of Hydraulic Engineering, 2004, 35(6): 108-113. (in Chinese) doi: 10.3321/j.issn:0559-9350.2004.06.019
|
[3] |
孔令伟, 陈建斌, 郭爱国, 等. 大气作用下膨胀土边坡的现场响应试验研究[J]. 岩土工程学报, 2007, 29(7): 1065-1073. doi: 10.3321/j.issn:1000-4548.2007.07.017
KONG Lingwei, CHEN Jianbin, GUO Aiguo, et al. Field response tests on expansive soil slopes under atmosphere[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1065-1073. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.07.017
|
[4] |
BAER J U, KENT T F, ANDERSON S H. Image analysis and fractal geometry to characterize soil desiccation cracks[J]. Geoderma, 2009, 154(1/2): 153-163.
|
[5] |
HT RAYHANI M, YANFUL E K, FAKHER A. Desiccation-induced cracking and its effect on the hydraulic conductivity of clayey soils from Iran[J]. Canadian Geotechnical Journal, 2007, 44(3): 276-283. doi: 10.1139/t06-125
|
[6] |
LI J H, LI L, CHEN R, et al. Cracking and vertical preferential flow through landfill clay liners[J]. Engineering Geology, 2016, 206: 33-41. doi: 10.1016/j.enggeo.2016.03.006
|
[7] |
JOSEPH S D, CAMPS-ARBESTAIN M, LIN Y, et al. An investigation into the reactions of biochar in soil[J]. Soil Research, 2010, 48(7): 501. doi: 10.1071/SR10009
|
[8] |
LIU H K, XU F, XIE Y L, et al. Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil[J]. Science of the Total Environment, 2018, 645: 702-709. doi: 10.1016/j.scitotenv.2018.07.115
|
[9] |
ZONG Y T, CHEN D P, LU S G. Impact of biochars on swell-shrinkage behavior, mechanical strength, and surface cracking of clayey soil[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(6): 920-926. doi: 10.1002/jpln.201300596
|
[10] |
GOPAL P, BORDOLOI S, RATNAM R, et al. Investigation of infiltration rate for soil-biochar composites of water hyacinth[J]. Acta Geophysica, 2019, 67(1): 231-246. doi: 10.1007/s11600-018-0237-8
|
[11] |
BORDOLOI S, GOPAL P, BODDU R, et al. Soil-biochar-water interactions: role of biochar from Eichhornia crassipes in influencing crack propagation and suction in unsaturated soils[J]. Journal of Cleaner Production, 2019, 210: 847-859. doi: 10.1016/j.jclepro.2018.11.051
|
[12] |
KUMAR H, CAI W L, LAI J L, et al. Influence of in-house produced biochars on cracks and retained water during drying-wetting cycles: comparison between conventional plant, animal, and nano-biochars[J]. Journal of Soils and Sediments, 2020, 20(4): 1983-1996. doi: 10.1007/s11368-020-02573-8
|
[13] |
LU Y, GU K, ZHANG Y P, et al. Impact of biochar on the desiccation cracking behavior of silty clay and its mechanisms[J]. Science of the Total Environment, 2021, 794: 148608. doi: 10.1016/j.scitotenv.2021.148608
|
[14] |
唐朝生, 崔玉军, TANG A M, 等. 膨胀土收缩开裂过程及其温度效应[J]. 岩土工程学报, 2012, 34(12): 2181-2187. http://cge.nhri.cn/cn/article/id/14936
TANG Chaosheng, CUI Yujun, TANG A M, et al. Shrinkage and desiccation cracking process of expansive soil and its temperature-dependent behaviour[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2181-2187. (in Chinese) http://cge.nhri.cn/cn/article/id/14936
|
[15] |
骆赵刚, 汪时机, 杨振北. 膨胀土湿干胀缩裂隙演化及其定量分析[J]. 岩土力学, 2020, 41(7): 2313-2323. doi: 10.16285/j.rsm.2019.1507
LUO Zhaogang, WANG Shiji, YANG Zhenbei. Quantitative analysis of fracture evolution of expansive soils under wetting-drying cycles[J]. Rock and Soil Mechanics, 2020, 41(7): 2313-2323. (in Chinese) doi: 10.16285/j.rsm.2019.1507
|
[16] |
ZENG H, TANG C S, CHENG Q, et al. Coupling effects of interfacial friction and layer thickness on soil desiccation cracking behavior[J]. Engineering Geology, 2019, 260: 105220. doi: 10.1016/j.enggeo.2019.105220
|
[17] |
ZHANG Y P, GU K, LI J W, et al. Effect of biochar on desiccation cracking characteristics of clayey soils[J]. Geoderma, 2020, 364: 114182. doi: 10.1016/j.geoderma.2020.114182
|
[18] |
LIU C, TANG C S, SHI B, et al. Automatic quantification of crack patterns by image processing[J]. Computers & Geosciences, 2013, 57: 77-80.
|
[19] |
TANG C S, SHI B, LIU C, et al. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils[J]. Engineering Geology, 2008, 101(3/4): 204-217.
|
[20] |
徐其良, 唐朝生, 刘昌黎, 等. 土体干缩裂隙发育过程及断裂力学机制研究进展[J]. 地球科学与环境学报, 2018, 40(2): 223-236. doi: 10.3969/j.issn.1672-6561.2018.02.009
XU Qiliang, TANG Chaosheng, LIU Changli, et al. Review on soil desiccation cracking behavior and the mechanism related to fracture mechanics[J]. Journal of Earth Sciences and Environment, 2018, 40(2): 223-236. (in Chinese) doi: 10.3969/j.issn.1672-6561.2018.02.009
|
[21] |
YESILLER N, MILLER C J, INCI G, et al. Desiccation and cracking behavior of three compacted landfill liner soils[J]. Engineering Geology, 2000, 57(1/2): 105-121.
|
[22] |
LAKSHMIKANTHA M R, PRAT P C, LEDESMA A. Experimental evidence of size effect in soil cracking[J]. Canadian Geotechnical Journal, 2012, 49(3): 264-284. doi: 10.1139/t11-102
|
[23] |
PERON H, HUECKEL T, LALOUI L, et al. Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification[J]. Canadian Geotechnical Journal, 2009, 46(10): 1177-1201. doi: 10.1139/T09-054
|
[24] |
TOLLENAAR R N, VAN PAASSEN L A, JOMMI C. Observations on the desiccation and cracking of clay layers[J]. Engineering Geology, 2017, 230: 23-31. doi: 10.1016/j.enggeo.2017.08.022
|
[25] |
唐朝生. 极端气候工程地质: 干旱灾害及对策研究进展[J]. 科学通报, 2020, 65(27): 3009-3027, 3008. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202027011.htm
TANG Chaosheng. Extrem climate engineering geology: soil engineering properties response to drought climate and measures for disaster mitigation[J]. Chinese Science Bulletin, 2020, 65(27): 3009-3027, 3008. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202027011.htm
|
[26] |
查甫生, 杜延军, 刘松玉, 等. 自由膨胀比指标评价改良膨胀土的膨胀性[J]. 岩土工程学报, 2008, 30(10): 1502-1509. doi: 10.3321/j.issn:1000-4548.2008.10.014
ZHA Fusheng, DU Yanjun, LIU Songyu, et al. Evaluation of swelling capacity of stabilized expansive soils using free swell ratio method[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1502-1509. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.10.014
|
[27] |
陈善雄, 余颂, 孔令伟, 等. 膨胀土判别与分类方法探讨[J]. 岩土力学, 2005, 26(12): 1895-1900. doi: 10.3969/j.issn.1000-7598.2005.12.006
CHEN Shanxiong, YU Song, KONG Lingwei, et al. Study on approach to identification and classification of expansive soils[J]. Rock and Soil Mechanics, 2005, 26(12): 1895-1900. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.12.006
|
[28] |
师育新, 张卫国, 戴雪荣, 等. 镇江下蜀土中的黏土矿物及其古环境意义[J]. 海洋地质与第四纪地质, 2005, 25(4): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200504020.htm
SHI Yuxin, ZHANG Weiguo, DAI Xuerong, et al. Characteristics of clay mineral assemblage of Xiashu loess and their paleoenvironmental significance[J]. Marine Geology & Quaternary Geology, 2005, 25(4): 99-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200504020.htm
|
[29] |
ZONG Y T, WANG Y F, SHENG Y, et al. Ameliorating soil acidity and physical properties of two contrasting texture Ultisols with wastewater sludge biochar[J]. Environmental Science and Pollution Research, 2018, 25(26): 25726-25733.
|
[30] |
孙志亮, 郭爱国, 太俊. 膨胀土与红黏土石灰改性对比试验研究[J]. 岩土力学, 2013, 34(增刊2): 150-155. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S2025.htm
SUN Zhiliang, GUO Aiguo, TAI Jun. Comparative laboratory study of lime-treated expansive soil and red clay[J]. Rock and Soil Mechanics, 2013, 34(S2): 150-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S2025.htm
|
1. |
李淑娥,陈志明,徐永福,徐宇冉,康峰沂,杜仲宝. 基于颗粒分布分形模型毛细水上升高度计算分析. 岩土工程学报. 2024(10): 2221-2228 .
![]() | |
2. |
曲诗章,刘晓明,黎莉,陈仁朋. 基于双分形级配模型参数的粗粒土渗透系数计算公式. 岩土工程学报. 2023(01): 144-152 .
![]() | |
3. |
韩志洋,曹志翔,黄开放. 基于离散元模拟的土石混合体剪切与变形特性研究. 中国农村水利水电. 2023(05): 238-244 .
![]() | |
4. |
刘晓义,胡敏,刘大顺. 基于离散元法的砂砾石颗粒破碎特征研究. 低温建筑技术. 2023(12): 24-28 .
![]() | |
5. |
孟敏强,肖杨,孙增春,张志超,蒋翔,刘汉龙,何想,吴焕然,史金权. 粗粒料及粒间微生物胶结的破碎-强度-能量耗散研究进展. 中国科学:技术科学. 2022(07): 999-1021 .
![]() | |
6. |
王瑞,郭聚坤,尹斌,雷胜友,魏道凯. 钙质砂颗粒形状及破碎特性试验研究. 海洋工程. 2022(05): 158-166 .
![]() | |
7. |
陈晓斌,郭云鹏,蔡德钩,尧俊凯,肖源杰. 铁路工程粗颗粒土路基填料研究现状与发展综述. 路基工程. 2021(03): 1-11 .
![]() | |
8. |
叶阳升,朱宏伟,尧俊凯,蔡德钩,安再展. 高速铁路路基振动压实理论与智能压实技术综述. 中国铁道科学. 2021(05): 1-11 .
![]() | |
9. |
于玉贞,张向韬,王远,吕禾,孙逊. 堆石料真三轴条件下力学特性试验研究进展. 工程力学. 2020(04): 1-21+29 .
![]() | |
10. |
王晓帅,王子寒,景晓昆,肖成志. 粗粒土大型直剪试验宏细观研究与离散元模拟. 深圳大学学报(理工版). 2020(03): 279-286 .
![]() | |
11. |
孟敏强,王磊,蒋翔,汪成贵,刘汉龙,肖杨. 基于尺寸效应的粗粒土单颗粒破碎试验及数值模拟. 岩土力学. 2020(09): 2953-2962 .
![]() |