• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Xiang, GU Kai, ZHANG Yuping, LU Yu, TANG Chaosheng, SHEN Zhengtao, SHI Bin. Effects of biochar on desiccation cracking characteristics of different soils and their mechanism[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 876-882. DOI: 10.11779/CJGE20220192
Citation: WANG Xiang, GU Kai, ZHANG Yuping, LU Yu, TANG Chaosheng, SHEN Zhengtao, SHI Bin. Effects of biochar on desiccation cracking characteristics of different soils and their mechanism[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 876-882. DOI: 10.11779/CJGE20220192

Effects of biochar on desiccation cracking characteristics of different soils and their mechanism

More Information
  • Received Date: June 30, 2022
  • Available Online: April 16, 2023
  • In nature, the desiccation cracking of soils caused by water evaporation and shrinkage may lead to various engineering geological problems. The addition of biochar into the soil can effectively change its desiccation cracking characteristics. In this study, the effects of wood biochar dosages (0, 0.01, 0.03, 0.05, 0.1 kg/kg) on the desiccation cracking characteristics of Xiashu soil and red clay are investigated. The influence mechanism is demonstrated according to the microstructural analysis and the Atterberg limits. The results indicate that: (1) The effects of biochar on soil cracking significantly vary, depending on the type of the soils. For the Xiashu soil, the biochar accelerates the initial rate of cracking development, reduces the later cracking development rate and eventually inhibits the cracking. The inhibition effects are enhanced with the increase of the dosages, and the crack ratio is decreased by up to 32.2%. For the red clay, the biochar promotes the development of cracking significantly, especially in the presence of more biochar with the highest increase of 80.4%. (2) The biochar affects desiccation cracking characteristics of the soils in two ways. On the one hand, the biochar, as a non-plastic material, occupies the shrinkable space of the soils; on the other hand, it affects the thickness of hydration film of soil particles and affects the expansion of the soils. The combined effects of these two ways determine the cracking characteristics of the biochar-amended soils.
  • [1]
    TANG C S, SHI B, LIU C, et al. Experimental investigation of the desiccation cracking behavior of soil layers during drying[J]. Journal of Materials in Civil Engineering, 2011, 23(6): 873-878. doi: 10.1061/(ASCE)MT.1943-5533.0000242
    [2]
    袁俊平, 殷宗泽. 膨胀土裂隙的量化指标与强度性质研究[J]. 水利学报, 2004, 35(6): 108-113. doi: 10.3321/j.issn:0559-9350.2004.06.019

    YUAN Junping, YIN Zongze. Quantitative index of fissure and strength characteristics of fissured expansive soils[J]. Journal of Hydraulic Engineering, 2004, 35(6): 108-113. (in Chinese) doi: 10.3321/j.issn:0559-9350.2004.06.019
    [3]
    孔令伟, 陈建斌, 郭爱国, 等. 大气作用下膨胀土边坡的现场响应试验研究[J]. 岩土工程学报, 2007, 29(7): 1065-1073. doi: 10.3321/j.issn:1000-4548.2007.07.017

    KONG Lingwei, CHEN Jianbin, GUO Aiguo, et al. Field response tests on expansive soil slopes under atmosphere[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1065-1073. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.07.017
    [4]
    BAER J U, KENT T F, ANDERSON S H. Image analysis and fractal geometry to characterize soil desiccation cracks[J]. Geoderma, 2009, 154(1/2): 153-163.
    [5]
    HT RAYHANI M, YANFUL E K, FAKHER A. Desiccation-induced cracking and its effect on the hydraulic conductivity of clayey soils from Iran[J]. Canadian Geotechnical Journal, 2007, 44(3): 276-283. doi: 10.1139/t06-125
    [6]
    LI J H, LI L, CHEN R, et al. Cracking and vertical preferential flow through landfill clay liners[J]. Engineering Geology, 2016, 206: 33-41. doi: 10.1016/j.enggeo.2016.03.006
    [7]
    JOSEPH S D, CAMPS-ARBESTAIN M, LIN Y, et al. An investigation into the reactions of biochar in soil[J]. Soil Research, 2010, 48(7): 501. doi: 10.1071/SR10009
    [8]
    LIU H K, XU F, XIE Y L, et al. Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil[J]. Science of the Total Environment, 2018, 645: 702-709. doi: 10.1016/j.scitotenv.2018.07.115
    [9]
    ZONG Y T, CHEN D P, LU S G. Impact of biochars on swell-shrinkage behavior, mechanical strength, and surface cracking of clayey soil[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(6): 920-926. doi: 10.1002/jpln.201300596
    [10]
    GOPAL P, BORDOLOI S, RATNAM R, et al. Investigation of infiltration rate for soil-biochar composites of water hyacinth[J]. Acta Geophysica, 2019, 67(1): 231-246. doi: 10.1007/s11600-018-0237-8
    [11]
    BORDOLOI S, GOPAL P, BODDU R, et al. Soil-biochar-water interactions: role of biochar from Eichhornia crassipes in influencing crack propagation and suction in unsaturated soils[J]. Journal of Cleaner Production, 2019, 210: 847-859. doi: 10.1016/j.jclepro.2018.11.051
    [12]
    KUMAR H, CAI W L, LAI J L, et al. Influence of in-house produced biochars on cracks and retained water during drying-wetting cycles: comparison between conventional plant, animal, and nano-biochars[J]. Journal of Soils and Sediments, 2020, 20(4): 1983-1996. doi: 10.1007/s11368-020-02573-8
    [13]
    LU Y, GU K, ZHANG Y P, et al. Impact of biochar on the desiccation cracking behavior of silty clay and its mechanisms[J]. Science of the Total Environment, 2021, 794: 148608. doi: 10.1016/j.scitotenv.2021.148608
    [14]
    唐朝生, 崔玉军, TANG A M, 等. 膨胀土收缩开裂过程及其温度效应[J]. 岩土工程学报, 2012, 34(12): 2181-2187. http://cge.nhri.cn/cn/article/id/14936

    TANG Chaosheng, CUI Yujun, TANG A M, et al. Shrinkage and desiccation cracking process of expansive soil and its temperature-dependent behaviour[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2181-2187. (in Chinese) http://cge.nhri.cn/cn/article/id/14936
    [15]
    骆赵刚, 汪时机, 杨振北. 膨胀土湿干胀缩裂隙演化及其定量分析[J]. 岩土力学, 2020, 41(7): 2313-2323. doi: 10.16285/j.rsm.2019.1507

    LUO Zhaogang, WANG Shiji, YANG Zhenbei. Quantitative analysis of fracture evolution of expansive soils under wetting-drying cycles[J]. Rock and Soil Mechanics, 2020, 41(7): 2313-2323. (in Chinese) doi: 10.16285/j.rsm.2019.1507
    [16]
    ZENG H, TANG C S, CHENG Q, et al. Coupling effects of interfacial friction and layer thickness on soil desiccation cracking behavior[J]. Engineering Geology, 2019, 260: 105220. doi: 10.1016/j.enggeo.2019.105220
    [17]
    ZHANG Y P, GU K, LI J W, et al. Effect of biochar on desiccation cracking characteristics of clayey soils[J]. Geoderma, 2020, 364: 114182. doi: 10.1016/j.geoderma.2020.114182
    [18]
    LIU C, TANG C S, SHI B, et al. Automatic quantification of crack patterns by image processing[J]. Computers & Geosciences, 2013, 57: 77-80.
    [19]
    TANG C S, SHI B, LIU C, et al. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils[J]. Engineering Geology, 2008, 101(3/4): 204-217.
    [20]
    徐其良, 唐朝生, 刘昌黎, 等. 土体干缩裂隙发育过程及断裂力学机制研究进展[J]. 地球科学与环境学报, 2018, 40(2): 223-236. doi: 10.3969/j.issn.1672-6561.2018.02.009

    XU Qiliang, TANG Chaosheng, LIU Changli, et al. Review on soil desiccation cracking behavior and the mechanism related to fracture mechanics[J]. Journal of Earth Sciences and Environment, 2018, 40(2): 223-236. (in Chinese) doi: 10.3969/j.issn.1672-6561.2018.02.009
    [21]
    YESILLER N, MILLER C J, INCI G, et al. Desiccation and cracking behavior of three compacted landfill liner soils[J]. Engineering Geology, 2000, 57(1/2): 105-121.
    [22]
    LAKSHMIKANTHA M R, PRAT P C, LEDESMA A. Experimental evidence of size effect in soil cracking[J]. Canadian Geotechnical Journal, 2012, 49(3): 264-284. doi: 10.1139/t11-102
    [23]
    PERON H, HUECKEL T, LALOUI L, et al. Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification[J]. Canadian Geotechnical Journal, 2009, 46(10): 1177-1201. doi: 10.1139/T09-054
    [24]
    TOLLENAAR R N, VAN PAASSEN L A, JOMMI C. Observations on the desiccation and cracking of clay layers[J]. Engineering Geology, 2017, 230: 23-31. doi: 10.1016/j.enggeo.2017.08.022
    [25]
    唐朝生. 极端气候工程地质: 干旱灾害及对策研究进展[J]. 科学通报, 2020, 65(27): 3009-3027, 3008. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202027011.htm

    TANG Chaosheng. Extrem climate engineering geology: soil engineering properties response to drought climate and measures for disaster mitigation[J]. Chinese Science Bulletin, 2020, 65(27): 3009-3027, 3008. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202027011.htm
    [26]
    查甫生, 杜延军, 刘松玉, 等. 自由膨胀比指标评价改良膨胀土的膨胀性[J]. 岩土工程学报, 2008, 30(10): 1502-1509. doi: 10.3321/j.issn:1000-4548.2008.10.014

    ZHA Fusheng, DU Yanjun, LIU Songyu, et al. Evaluation of swelling capacity of stabilized expansive soils using free swell ratio method[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1502-1509. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.10.014
    [27]
    陈善雄, 余颂, 孔令伟, 等. 膨胀土判别与分类方法探讨[J]. 岩土力学, 2005, 26(12): 1895-1900. doi: 10.3969/j.issn.1000-7598.2005.12.006

    CHEN Shanxiong, YU Song, KONG Lingwei, et al. Study on approach to identification and classification of expansive soils[J]. Rock and Soil Mechanics, 2005, 26(12): 1895-1900. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.12.006
    [28]
    师育新, 张卫国, 戴雪荣, 等. 镇江下蜀土中的黏土矿物及其古环境意义[J]. 海洋地质与第四纪地质, 2005, 25(4): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200504020.htm

    SHI Yuxin, ZHANG Weiguo, DAI Xuerong, et al. Characteristics of clay mineral assemblage of Xiashu loess and their paleoenvironmental significance[J]. Marine Geology & Quaternary Geology, 2005, 25(4): 99-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200504020.htm
    [29]
    ZONG Y T, WANG Y F, SHENG Y, et al. Ameliorating soil acidity and physical properties of two contrasting texture Ultisols with wastewater sludge biochar[J]. Environmental Science and Pollution Research, 2018, 25(26): 25726-25733.
    [30]
    孙志亮, 郭爱国, 太俊. 膨胀土与红黏土石灰改性对比试验研究[J]. 岩土力学, 2013, 34(增刊2): 150-155. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S2025.htm

    SUN Zhiliang, GUO Aiguo, TAI Jun. Comparative laboratory study of lime-treated expansive soil and red clay[J]. Rock and Soil Mechanics, 2013, 34(S2): 150-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S2025.htm
  • Other Related Supplements

  • Cited by

    Periodical cited type(11)

    1. 李淑娥,陈志明,徐永福,徐宇冉,康峰沂,杜仲宝. 基于颗粒分布分形模型毛细水上升高度计算分析. 岩土工程学报. 2024(10): 2221-2228 . 本站查看
    2. 曲诗章,刘晓明,黎莉,陈仁朋. 基于双分形级配模型参数的粗粒土渗透系数计算公式. 岩土工程学报. 2023(01): 144-152 . 本站查看
    3. 韩志洋,曹志翔,黄开放. 基于离散元模拟的土石混合体剪切与变形特性研究. 中国农村水利水电. 2023(05): 238-244 .
    4. 刘晓义,胡敏,刘大顺. 基于离散元法的砂砾石颗粒破碎特征研究. 低温建筑技术. 2023(12): 24-28 .
    5. 孟敏强,肖杨,孙增春,张志超,蒋翔,刘汉龙,何想,吴焕然,史金权. 粗粒料及粒间微生物胶结的破碎-强度-能量耗散研究进展. 中国科学:技术科学. 2022(07): 999-1021 .
    6. 王瑞,郭聚坤,尹斌,雷胜友,魏道凯. 钙质砂颗粒形状及破碎特性试验研究. 海洋工程. 2022(05): 158-166 .
    7. 陈晓斌,郭云鹏,蔡德钩,尧俊凯,肖源杰. 铁路工程粗颗粒土路基填料研究现状与发展综述. 路基工程. 2021(03): 1-11 .
    8. 叶阳升,朱宏伟,尧俊凯,蔡德钩,安再展. 高速铁路路基振动压实理论与智能压实技术综述. 中国铁道科学. 2021(05): 1-11 .
    9. 于玉贞,张向韬,王远,吕禾,孙逊. 堆石料真三轴条件下力学特性试验研究进展. 工程力学. 2020(04): 1-21+29 .
    10. 王晓帅,王子寒,景晓昆,肖成志. 粗粒土大型直剪试验宏细观研究与离散元模拟. 深圳大学学报(理工版). 2020(03): 279-286 .
    11. 孟敏强,王磊,蒋翔,汪成贵,刘汉龙,肖杨. 基于尺寸效应的粗粒土单颗粒破碎试验及数值模拟. 岩土力学. 2020(09): 2953-2962 .

    Other cited types(20)

Catalog

    Article views PDF downloads Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return