• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xuezeng, YANG Xueliang, YANG Zhilu, LI Zhen, YANG Zishuo. Thermal effects and infrared detection method for shallow reinforcement corrosion in tunnel linings under natural conditions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 680-689. DOI: 10.11779/CJGE20220183
Citation: LIU Xuezeng, YANG Xueliang, YANG Zhilu, LI Zhen, YANG Zishuo. Thermal effects and infrared detection method for shallow reinforcement corrosion in tunnel linings under natural conditions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 680-689. DOI: 10.11779/CJGE20220183

Thermal effects and infrared detection method for shallow reinforcement corrosion in tunnel linings under natural conditions

More Information
  • Received Date: February 20, 2022
  • Available Online: April 16, 2023
  • With the increase of the service life of the tunnel, the diseases such as water leakage and cracking of the linings have become normal, and the induced reinforcement corrosion gradually emerges. After the reinforcement corrosion to a certain extent, the linings will peel off. Therefore, it is particularly important to discover the corrosion degree and position of reinforcement in time. The heat conduction laws of reinforcement corrosion of the linings under the natural temperature difference are studied through the laboratory tests and numerical simulations, the influence laws of temperature difference inside and outside the linings and the degree of reinforcement corrosion on the inner surface temperature distribution of the linings are analyzed, and the feasibility and applicable conditions of infrared thermography technology for detecting the corrosion of the shallow reinforcement corrosion of the linings are explored. The results show that: (1) The infrared detection is feasible when the temperature difference inside and outside the linings is 1.0℃~11.9℃, and the temperature difference inside and outside the linings can meet the conditions in winter. The minimum temperature difference required by the infrared detection is 3.8℃, 1.8℃ and 1.4℃ when the corrosion rate of reinforcement is 6.51%, 19.02% and 23.16%. (2) The relationship among the corrosion rate of lining reinforcement(ρ), the temperature difference of inner surface of the secondary linings (T1) and the temperature difference between the inner and outer surfaces of the secondary linings(T2) isρ=1.1×105T23.2T13+ 503.7T20.9T1. When the temperature difference inside and outside the lining is 3℃~30℃, the detectable corrosion rate of reinforcement is 9.78%~1.18%. (3) Through the heat conduction effect caused by the temperature difference inside and outside the linings, the position and degree of reinforcement corrosion can be comprehensively judged from the temperature distribution on the inner surface of the linings, which provides a new rapid detection method for the corrosion of shallow reinforcement in tunnel linings.
  • [1]
    交通运输部. 2020年交通运输行业发展统计公报[J]. 交通财会, 2021(6): 92-97. https://www.cnki.com.cn/Article/CJFDTOTAL-JTCK202106025.htm

    Ministry of Transport. Statistical bulletin on the development of transportation industry in 2020[J]. Finance & Accounting for Communications, 2021(6): 92-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTCK202106025.htm
    [2]
    TIAN S M, WANG W, GONG J F. Development and prospect of railway tunnels in China(including statistics of railway tunnels in China by the end of 2020)[J]. Tunnel Construction, 2021, 41(2): 308-325.
    [3]
    PARTHIBAN T, RAVI R, PARTHIBAN G T. Potential monitoring system for corrosion of steel in concrete[J]. Advances in Engineering Software, 2006, 37(6): 375-381. doi: 10.1016/j.advengsoft.2005.09.004
    [4]
    王海彦, 骆宪龙, 杨石柱. 隧道围岩温度场变化规律理论分析[J]. 石家庄铁路职业技术学院学报, 2006, 5(2): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZB200602006.htm

    WANG Haiyan, LUO Xianlong, YANG Shizhu. Analysis of the variation rule about the tunnel surrounding rock's temperature field[J]. Journal of Shijiazhuang Institute of Railway Technology, 2006, 5(2): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZB200602006.htm
    [5]
    程凡. 鲁霍一级公路阿拉坦隧道温度场特性研究[D]. 西安: 长安大学, 2009.

    CHENG Fan. Research on the Temperature Field of Alatan Tunnel in Lu-Huo Highway[D]. Xi'an: Changan University, 2009. (in Chinese)
    [6]
    KOBAYASHI K, BANTHIA N. Corrosion detection in reinforced concrete using induction heating and infrared thermography[J]. Journal of Civil Structural Health Monitoring, 2011, 1(1): 25-35.
    [7]
    WIGGENHAUSER H. Active IR-applications in civil engineering[J]. Infrared Physics & Technology, 2002, 43(3/4/5): 233-238.
    [8]
    WASHER G, FENWICK R, BOLLENI N, et al. Effects of environmental variables on infrared imaging of subsurface features of concrete bridges[J]. Transportation Research Record: Journal of the Transportation Research Board, 2009, 2108(1): 107-114 doi: 10.3141/2108-12
    [9]
    MATSUURA Y, MITSUNAGA K, HANAFUSA T. Development of high-speed thermal infrared imaging system for tunnel lining[J]. IEEJ Transactions on Fundamentals and Materials, 2009, 129(11): 755-762. doi: 10.1541/ieejfms.129.755
    [10]
    川上幸一, 小西真治, 篠原秀明, など. 赤外線熱計測による地下鉄覆工コンクリートの浮き検出方法の検討とその応用[J]. 土木学会論文集F1(トンネル工学), 2018, 74(1): 25-39. doi: 10.2208/jscejte.74.25

    KAWAKAMI Kouichi, KONISHI Shinji, SHINOHARA Hideaki, et al. Infrared thermometry application to the detection of void in the subway tunnel lining surface[J]. Journal of Japan Society of Civil Engineers, Ser. F1(Tunnel Engineering), 2018, 74(1): 25-39. (in Japanese) doi: 10.2208/jscejte.74.25
    [11]
    刘学增, 唐精, 杨芝璐, 等. 隧道衬砌浅层剥离的红外探测方法[J]. 岩石力学与工程学报, 2021, 40(增刊1): 2876-2887. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1030.htm

    Liu Xuezeng, TANG Jing, YANG Zhilu, et al. Infrared detection method for shallow peeling of tunnel lining[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S1): 2876-2887. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1030.htm
    [12]
    高徳類, 新井淳一, 野嶋潤一郎, など. 赤外線を用いたコンクリート中の鉄筋腐食状況の把握に関する研究[J]. コンクリート工学年次論文集, 2014, 36(1): 2032-2037.

    TAKANORI Tagui, ARAI Junichi, NOJIMA Junichiro, et al. Study on reinforcement corrosion situation in concrete using infrared ray[J]. Journal of Concrete Engineering, 2014, 36(1): 2032-2037. (in Japanese)
    [13]
    ROCHA J H A, PÓVOAS Y V. Detection of corrosion in reinforced concrete with infrared thermography and ultrasound[J]. Ambiente Construído, 2019, 19(3): 53-68. doi: 10.1590/s1678-86212019000300324
    [14]
    钱琦. 锈胀开裂状态下红外成像法检测钢筋锈蚀率的研究[D]. 昆明: 昆明理工大学, 2018.

    QIAN Qi. Study on Detection of Corrosion Rate of Steel Bars by Infrared Imaging Method under Rust Expansion and Cracking State[D]. Kunming: Kunming University of Science and Technology, 2018. (in Chinese)
    [15]
    干伟忠, 金伟良, 高明赞. 混凝土中钢筋加速锈蚀试验适用性研究[J]. 建筑结构学报, 2011, 32(2): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201102007.htm

    GAN Weizhong, JIN Weiliang, GAO Mingzan. Applicability study on accelerated corrosion methods of steel bars in concrete structure[J]. Journal of Building Structures, 2011, 32(2): 41-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201102007.htm
    [16]
    袁思奇. 钢筋锈蚀环境下混凝土结构全寿命周期设计与优化初探[D]. 镇江: 江苏大学, 2017.

    YUAN Siqi. Life-Cycle Design and Optimization of Concrete Structures with Reinforcement Corrosion[D]. Zhenjiang: Jiangsu University, 2017. (in Chinese)
    [17]
    公路隧道设计规范第一册土建工程: JTG 3370.1— 2018[S]. 北京: 人民交通出版社, 2019.

    Specifications for Design of Highway Tunnels Section 1 Civil Engineering: JTG 3370.1—2018[S]. Beijing: China Communications Press, 2019. (in Chinese)
    [18]
    王坤, 赵羽习, 夏晋. 混凝土结构锈裂形态试验研究及数值模拟[J]. 建筑结构学报, 2019, 40(7): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201907015.htm

    WANG Kun, ZHAO Yuxi, XIA Jin. Experimental study and numerical simulation of corrosion-induced crack patterns of concrete structures[J]. Journal of Building Structures, 2019, 40(7): 138-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201907015.htm
    [19]
    大下英吉, 堀江宏明, 長坂慎吾, など. 電磁誘導加熱によるコンクリート表面温度性状に基づいたRC構造物の鉄筋腐食性状に関する非破壊検査手法[J]. 土木学会論文集E, 2009, 65(1): 76-92.

    OSHITA Hideki, HORIE Hiroaki, NAGASAKA Shingo, et al. Nondestructive evaluation of corrosion in reinforced concrete by thermal behavior on concrete surface due to electro-magnetic heating[J]. Journal of Japan Society of Civil Engineers, Se E, 2009, 65(1): 76-92. (in Japanese)
    [20]
    朱伯芳. 大体积混凝土温度应力与温度控制[M]. 2版. 北京: 中国水利水电出版社, 2012.

    ZHU Bofang. Temperature Stress and Temperature Control of Mass Concrete[M]. 2nd ed. Beijing: China Water & Power Press, 2012. (in Chinese)

Catalog

    Article views (247) PDF downloads (79) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return