• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Jun, DENG Jianhui, CHEN Fei, HUANG Yiming. Moisture-induced softening characteristics and mechanisms of saturated hard rocks under compression[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 768-776. DOI: 10.11779/CJGE20220172
Citation: ZHU Jun, DENG Jianhui, CHEN Fei, HUANG Yiming. Moisture-induced softening characteristics and mechanisms of saturated hard rocks under compression[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 768-776. DOI: 10.11779/CJGE20220172

Moisture-induced softening characteristics and mechanisms of saturated hard rocks under compression

More Information
  • Received Date: February 17, 2022
  • Available Online: April 16, 2023
  • The water-rock interaction in rock mass engineering can lead to physical and mechanical deterioration of rock, that is, the moisture-induced softening phenomenon of rock. Currently, the studies on the moisture-induced softening properties of saturated hard rocks are not comprehensive, and it is still challenging to evaluate the triggering condition and extent of effects related to various water-rock interactions. By choosing the typical hard rocks with different mineral compositions and microstructures (i.e., Baoxin marble, Jinping marble, and limestone), the uniaxial compression tests, along with the acoustic emission (AE) monitoring, of three kinds of hard rocks under dry and saturated conditions are carried out. The mechanical properties of rock including uniaxial compressive strength (UCS), elastic modulus and failure patterns as well as the statistical characteristics of the dominant frequency of AE waveforms are analyzed. Further, the triggering condition and extent of the pore water pressure effects of these three kinds of rocks are evaluated. The results show that when the hard rocks are saturated, the UCS and elastic modulus both decrease, and the tensile cracks and tensile failure surfaces increase. The twin-peak feature of the dominant frequency of all AE waveforms is exhibited, which is independent of the hard rock types and soaking states. As the hard rocks are saturated, the number of AE waveforms in high dominant frequency bands reduces remarkably, while that in low dominant frequency bands increases significantly. The effect of pore water pressure, which corresponds to the low dominant frequency of AE waveforms, is the main factor responsible for the mechanical degradation of three kinds of saturated hard rocks, and its intensity depends on the mineral composition and pore structure of rock.
  • [1]
    周翠英, 谭祥韶, 邓毅梅, 等. 特殊软岩软化的微观机制研究[J]. 岩石力学与工程学报, 2005, 24(3): 394-400. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200503007.htm

    ZHOU Cuiying, TAN Xiangshao, DENG Yimei, et al. Research on softening micro-mechanism of special soft rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(3): 394-400. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200503007.htm
    [2]
    MANN R L, FATT I. Effect of pore fluids on the elastic properties of sandstone[J]. Geophysics, 1960, 25(2): 433-444. doi: 10.1190/1.1438713
    [3]
    熊德国, 赵忠明, 苏承东, 等. 饱水对煤系地层岩石力学性质影响的试验研究[J]. 岩石力学与工程学报, 2011, 30(5): 998-1006. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105018.htm

    XIONG Deguo, ZHAO Zhongming, SU Chengdong, et al. Experimental study of effect of water-saturated state on mechanical properties of rock in coal measure strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 998-1006. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105018.htm
    [4]
    ZHU J, DENG J H, CHEN F, et al. Water saturation effects on mechanical and fracture behavior of marble[J]. International Journal of Geomechanics, 2020, 20(10):
    [5]
    黄弈茗. 灰岩与大理岩的水软化机理研究[D]. 成都: 四川大学, 2019.

    HUANG Yiming. Moisture-Induced Softening Mechanism of Limestone and Marble[D]. Chengdu: Sichuan University, 2019. (in Chinese)
    [6]
    CHEN T C, YEUNG M R, MORI N. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J]. Cold Regions Science and Technology, 2004, 38(2/3): 127-136.
    [7]
    ERGULER Z A, ULUSAY R. Water-induced variations in mechanical properties of clay-bearing rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 355-370. doi: 10.1016/j.ijrmms.2008.07.002
    [8]
    VA´SA´RHELYI B. Influence of water saturation on the strength of Volcanic Tuffs in Eurock[C]// International Symposium-Eurock. Maderia, 2002: 89-96.
    [9]
    HAWKINS A B, MCCONNELL B J. Sensitivity of sandstone strength and deformability to changes in moisture content[J]. Quarterly Journal of Engineering Geology, 1992, 25(2): 115-130. doi: 10.1144/GSL.QJEG.1992.025.02.05
    [10]
    SAKUMA H. Adhesion energy between mica surfaces: implications for the frictional coefficient under dry and wet conditions[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(12): 6066-6075. doi: 10.1002/2013JB010550
    [11]
    PARK N, OLSON J E E, HOLDER J. Stress-corrosion cracking as an alternative time-dependent shale-stability model[J]. SPE Drilling & Completion, 2010, 25(2): 168-176.
    [12]
    ZHOU Z L, CAI X, ZHAO Y, et al. Strength characteristics of dry and saturated rock at different strain rates[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7): 1919-1925. doi: 10.1016/S1003-6326(16)64314-5
    [13]
    朱俊, 邓建辉, 黄弈茗, 等. 饱和大理岩特征强度试验研究[J]. 岩石力学与工程学报, 2019, 38(6): 1129-1138. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906005.htm

    ZHU Jun, DENG Jianhui, HUANG Yiming, et al. Experimental study on the characteristic strength of saturated marble[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1129-1138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906005.htm
    [14]
    OHNAKA M, MOGI K. Frequency characteristics of acoustic emission in rocks under uniaxial compression and its relation to the fracturing process to failure[J]. Journal of Geophysical Research, 1982, 87(B5): 3873. doi: 10.1029/JB087iB05p03873
    [15]
    CAI M, MORIOKA H, KAISER P K, et al. Back-analysis of rock mass strength parameters using AE monitoring data[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(4): 538-549. doi: 10.1016/j.ijrmms.2006.09.012
    [16]
    SUN X M, XU H C, ZHENG L G, et al. An experimental investigation on acoustic emission characteristics of sandstone rockburst with different moisture contents[J]. Science China Technological Sciences, 2016, 59(10): 1549-1558. doi: 10.1007/s11431-016-0181-8
    [17]
    邓朝福, 刘建锋, 陈亮, 等. 不同含水状态花岗岩断裂力学行为及声发射特征[J]. 岩土工程学报, 2017, 39(8): 1538-1544. doi: 10.11779/CJGE201708023

    DENG Chaofu, LIU Jianfeng, CHEN Liang, et al. Mechanical behaviors and acoustic emission characteristics of fracture of granite under different moisture conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1538-1544. (in Chinese) doi: 10.11779/CJGE201708023
    [18]
    李博, 叶鹏进, 黄林, 等. 干燥与饱和岩石裂隙受压变形与声发射特性研究[J]. 岩土工程学报, 2021, 43(12): 2249-2257. doi: 10.11779/CJGE202112011

    LI Bo, YE Pengjin, HUANG Lin, et al. Deformation and acoustic emission characteristics of dry and saturated rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2249-2257. (in Chinese) doi: 10.11779/CJGE202112011
    [19]
    何满潮, 赵菲, 张昱, 等. 瞬时应变型岩爆模拟试验中花岗岩主频特征演化规律分析[J]. 岩土力学, 2015, 36(1): 1-8, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501001.htm

    HE Manchao, ZHAO Fei, ZHANG Yu, et al. Feature evolution of dominant frequency components in acoustic emissions of instantaneous strain-type granitic rockburst simulation tests[J]. Rock and Soil Mechanics, 2015, 36(1): 1-8, 33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501001.htm
    [20]
    赵奎, 杨道学, 曾鹏, 等. 单轴压缩条件下花岗岩声学信号频域特征分析[J]. 岩土工程学报, 2020, 42(12): 2189-2197. doi: 10.11779/CJGE202012004

    ZHAO Kui, YANG Daoxue, ZENG Peng, et al. Frequency-domain characteristics of acoustic signals of granite under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2189-2197. (in Chinese) doi: 10.11779/CJGE202012004
    [21]
    CHUGH Y, STEFANKO R. Investigation of the frequency spectrum of microseismic activity in rock under tension[C]// Applied Rock Mechanics, Proceedings tenth Symposium of rock mechanics held at the University of Texas at Austin, Austin, 1968.
    [22]
    READ M D, AYLING M R, MEREDITH P G, et al. Microcracking during triaxial deformation of porous rocks monitored by changes in rock physical properties: Ⅱ Pore volumometry and acoustic emission measurements on water-saturated rocks[J]. Tectonophysics, 1995, 245(3/4): 223-235.
    [23]
    张艳博, 黄晓红, 李莎莎, 等. 含水砂岩在破坏过程中的频谱特性分析[J]. 岩土力学, 2013, 34(6): 1574-1578. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306010.htm

    ZHANG Yanbo, HUANG Xiaohong, LI Shasha, et al. Spectral character analysis of sandstone under saturation condition in rupture procedure[J]. Rock and Soil Mechanics, 2013, 34(6): 1574-1578. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306010.htm
    [24]
    CAI M, KAISER P K, MORIOKA H, et al. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(4): 550-564.
    [25]
    李林芮. 岩石破坏的声发射主频特征与力学机制[D]. 成都: 四川大学, 2017.

    LI Linrui. Acoustic Emission Frequency Characteristics and Mechanical Mechanism of Rock Failure[D]. Chengdu: Sichuan University, 2017. (in Chinese)
    [26]
    邓建辉, 李林芮, 陈菲, 等. 大理岩破坏的声发射双主频特征及其机制初探[J]. 工程科学与技术, 2018, 50(5): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201805002.htm

    DENG Jianhui, LI Linrui, CHEN Fei, et al. Twin-peak frequencies of acoustic emission due to the fracture of marble and their possible mechanism[J]. Advanced Engineering Sciences, 2018, 50(5): 12-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201805002.htm
    [27]
    工程岩体试验方法标准: GB/T50266—201[S]. 北京: 中国计划出版社, 2013.

    Standard for Test Method of Engineering Rock Mass: GB/T50266—201[S]. Beijing: China Planning Press, 2013. (in Chinese)
    [28]
    谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517000.htm

    XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517000.htm
  • Other Related Supplements

Catalog

    Article views (327) PDF downloads (111) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return