Citation: | ZHU Jun, DENG Jianhui, CHEN Fei, HUANG Yiming. Moisture-induced softening characteristics and mechanisms of saturated hard rocks under compression[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 768-776. DOI: 10.11779/CJGE20220172 |
[1] |
周翠英, 谭祥韶, 邓毅梅, 等. 特殊软岩软化的微观机制研究[J]. 岩石力学与工程学报, 2005, 24(3): 394-400. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200503007.htm
ZHOU Cuiying, TAN Xiangshao, DENG Yimei, et al. Research on softening micro-mechanism of special soft rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(3): 394-400. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200503007.htm
|
[2] |
MANN R L, FATT I. Effect of pore fluids on the elastic properties of sandstone[J]. Geophysics, 1960, 25(2): 433-444. doi: 10.1190/1.1438713
|
[3] |
熊德国, 赵忠明, 苏承东, 等. 饱水对煤系地层岩石力学性质影响的试验研究[J]. 岩石力学与工程学报, 2011, 30(5): 998-1006. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105018.htm
XIONG Deguo, ZHAO Zhongming, SU Chengdong, et al. Experimental study of effect of water-saturated state on mechanical properties of rock in coal measure strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 998-1006. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105018.htm
|
[4] |
ZHU J, DENG J H, CHEN F, et al. Water saturation effects on mechanical and fracture behavior of marble[J]. International Journal of Geomechanics, 2020, 20(10):
|
[5] |
黄弈茗. 灰岩与大理岩的水软化机理研究[D]. 成都: 四川大学, 2019.
HUANG Yiming. Moisture-Induced Softening Mechanism of Limestone and Marble[D]. Chengdu: Sichuan University, 2019. (in Chinese)
|
[6] |
CHEN T C, YEUNG M R, MORI N. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J]. Cold Regions Science and Technology, 2004, 38(2/3): 127-136.
|
[7] |
ERGULER Z A, ULUSAY R. Water-induced variations in mechanical properties of clay-bearing rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 355-370. doi: 10.1016/j.ijrmms.2008.07.002
|
[8] |
VA´SA´RHELYI B. Influence of water saturation on the strength of Volcanic Tuffs in Eurock[C]// International Symposium-Eurock. Maderia, 2002: 89-96.
|
[9] |
HAWKINS A B, MCCONNELL B J. Sensitivity of sandstone strength and deformability to changes in moisture content[J]. Quarterly Journal of Engineering Geology, 1992, 25(2): 115-130. doi: 10.1144/GSL.QJEG.1992.025.02.05
|
[10] |
SAKUMA H. Adhesion energy between mica surfaces: implications for the frictional coefficient under dry and wet conditions[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(12): 6066-6075. doi: 10.1002/2013JB010550
|
[11] |
PARK N, OLSON J E E, HOLDER J. Stress-corrosion cracking as an alternative time-dependent shale-stability model[J]. SPE Drilling & Completion, 2010, 25(2): 168-176.
|
[12] |
ZHOU Z L, CAI X, ZHAO Y, et al. Strength characteristics of dry and saturated rock at different strain rates[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7): 1919-1925. doi: 10.1016/S1003-6326(16)64314-5
|
[13] |
朱俊, 邓建辉, 黄弈茗, 等. 饱和大理岩特征强度试验研究[J]. 岩石力学与工程学报, 2019, 38(6): 1129-1138. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906005.htm
ZHU Jun, DENG Jianhui, HUANG Yiming, et al. Experimental study on the characteristic strength of saturated marble[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1129-1138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906005.htm
|
[14] |
OHNAKA M, MOGI K. Frequency characteristics of acoustic emission in rocks under uniaxial compression and its relation to the fracturing process to failure[J]. Journal of Geophysical Research, 1982, 87(B5): 3873. doi: 10.1029/JB087iB05p03873
|
[15] |
CAI M, MORIOKA H, KAISER P K, et al. Back-analysis of rock mass strength parameters using AE monitoring data[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(4): 538-549. doi: 10.1016/j.ijrmms.2006.09.012
|
[16] |
SUN X M, XU H C, ZHENG L G, et al. An experimental investigation on acoustic emission characteristics of sandstone rockburst with different moisture contents[J]. Science China Technological Sciences, 2016, 59(10): 1549-1558. doi: 10.1007/s11431-016-0181-8
|
[17] |
邓朝福, 刘建锋, 陈亮, 等. 不同含水状态花岗岩断裂力学行为及声发射特征[J]. 岩土工程学报, 2017, 39(8): 1538-1544. doi: 10.11779/CJGE201708023
DENG Chaofu, LIU Jianfeng, CHEN Liang, et al. Mechanical behaviors and acoustic emission characteristics of fracture of granite under different moisture conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1538-1544. (in Chinese) doi: 10.11779/CJGE201708023
|
[18] |
李博, 叶鹏进, 黄林, 等. 干燥与饱和岩石裂隙受压变形与声发射特性研究[J]. 岩土工程学报, 2021, 43(12): 2249-2257. doi: 10.11779/CJGE202112011
LI Bo, YE Pengjin, HUANG Lin, et al. Deformation and acoustic emission characteristics of dry and saturated rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2249-2257. (in Chinese) doi: 10.11779/CJGE202112011
|
[19] |
何满潮, 赵菲, 张昱, 等. 瞬时应变型岩爆模拟试验中花岗岩主频特征演化规律分析[J]. 岩土力学, 2015, 36(1): 1-8, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501001.htm
HE Manchao, ZHAO Fei, ZHANG Yu, et al. Feature evolution of dominant frequency components in acoustic emissions of instantaneous strain-type granitic rockburst simulation tests[J]. Rock and Soil Mechanics, 2015, 36(1): 1-8, 33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501001.htm
|
[20] |
赵奎, 杨道学, 曾鹏, 等. 单轴压缩条件下花岗岩声学信号频域特征分析[J]. 岩土工程学报, 2020, 42(12): 2189-2197. doi: 10.11779/CJGE202012004
ZHAO Kui, YANG Daoxue, ZENG Peng, et al. Frequency-domain characteristics of acoustic signals of granite under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2189-2197. (in Chinese) doi: 10.11779/CJGE202012004
|
[21] |
CHUGH Y, STEFANKO R. Investigation of the frequency spectrum of microseismic activity in rock under tension[C]// Applied Rock Mechanics, Proceedings tenth Symposium of rock mechanics held at the University of Texas at Austin, Austin, 1968.
|
[22] |
READ M D, AYLING M R, MEREDITH P G, et al. Microcracking during triaxial deformation of porous rocks monitored by changes in rock physical properties: Ⅱ Pore volumometry and acoustic emission measurements on water-saturated rocks[J]. Tectonophysics, 1995, 245(3/4): 223-235.
|
[23] |
张艳博, 黄晓红, 李莎莎, 等. 含水砂岩在破坏过程中的频谱特性分析[J]. 岩土力学, 2013, 34(6): 1574-1578. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306010.htm
ZHANG Yanbo, HUANG Xiaohong, LI Shasha, et al. Spectral character analysis of sandstone under saturation condition in rupture procedure[J]. Rock and Soil Mechanics, 2013, 34(6): 1574-1578. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306010.htm
|
[24] |
CAI M, KAISER P K, MORIOKA H, et al. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(4): 550-564.
|
[25] |
李林芮. 岩石破坏的声发射主频特征与力学机制[D]. 成都: 四川大学, 2017.
LI Linrui. Acoustic Emission Frequency Characteristics and Mechanical Mechanism of Rock Failure[D]. Chengdu: Sichuan University, 2017. (in Chinese)
|
[26] |
邓建辉, 李林芮, 陈菲, 等. 大理岩破坏的声发射双主频特征及其机制初探[J]. 工程科学与技术, 2018, 50(5): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201805002.htm
DENG Jianhui, LI Linrui, CHEN Fei, et al. Twin-peak frequencies of acoustic emission due to the fracture of marble and their possible mechanism[J]. Advanced Engineering Sciences, 2018, 50(5): 12-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201805002.htm
|
[27] |
工程岩体试验方法标准: GB/T50266—201[S]. 北京: 中国计划出版社, 2013.
Standard for Test Method of Engineering Rock Mass: GB/T50266—201[S]. Beijing: China Planning Press, 2013. (in Chinese)
|
[28] |
谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517000.htm
XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517000.htm
|