• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
BAO Han, YIN Xiaoqing, LAN Hengxing, YAN Changgen, MA Yangfan, ZHANG Keke, PENG Jianbing. Permeability anisotropy of natural loess with gradation zone: case study of Q1 loess in Yan'an New District[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 730-738. DOI: 10.11779/CJGE20220159
Citation: BAO Han, YIN Xiaoqing, LAN Hengxing, YAN Changgen, MA Yangfan, ZHANG Keke, PENG Jianbing. Permeability anisotropy of natural loess with gradation zone: case study of Q1 loess in Yan'an New District[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 730-738. DOI: 10.11779/CJGE20220159

Permeability anisotropy of natural loess with gradation zone: case study of Q1 loess in Yan'an New District

More Information
  • Received Date: February 12, 2022
  • Available Online: April 16, 2023
  • In order to study the permeability anisotropy of the natural loess with gradation zone, the early Pleistocene (Q1) loess containing the loess layer (L19), paleosol layer (S18) and the gradation zone (S18Z) between them is taken as an example to obtain the permeability coefficients of saturation of various soil layers in 0°, 45° and 90° directions. The microstructural parameters such as porosity nm, shape coefficient F, morphological fractional dimension D and probability entropy Hm are calculated, and then the influences of the microstructural parameters on the permeability coefficient are analyzed. The results show that: (1) Except the probability entropy, the microstructural parameters of both the pores and the particles are anisotropic, and the microstructural characteristics of the soil layer in the gradation zone are significantly different from those of the adjacent soil layers. (2) Each soil layer has the largest permeability coefficient and the fastest attenuation of permeability during seepage along the deposition direction, and the smallest permeability coefficient and the slowest decay of permeability along the vertical deposition direction. (3) The influence degree of the microstructural parameters on the permeability coefficient of each soil layer is nm > F (pore) > F (particle) > D (pore) > D (particle) > Hm (pore) ≈Hm (particle), in which the contribution of porosity to the permeability can reach 30%. (4) The permeability of the gradation zone soil is the worst, and water tends to accumulate in the gradation zone, leading to an increase of the water content and weakening the mechanical properties of the soil, which needs to be focused on.
  • [1]
    HOU K, QIAN H, ZHANG Y T, et al. Seepage mechanisms and permeability differences between loess and paleosols in the critical zone of the Loess Plateau[J]. Earth Surface Processes and Landforms, 2021, 46(10): 2044-2059. doi: 10.1002/esp.5143
    [2]
    LU J, WANG T H, CHENG W C, et al. Permeability anisotropy of loess under influence of dry density and freeze-thaw cycles[J]. International Journal of Geomechanics, 2019, 19(9): 04019103. doi: 10.1061/(ASCE)GM.1943-5622.0001485
    [3]
    LAN H X, PENG J B, ZHU Y B, et al. Research on geological and surfacial processes and major disaster effects in the Yellow River Basin[J]. Science China Earth Sciences, 2022, 65(2): 234-256. doi: 10.1007/s11430-021-9830-8
    [4]
    LAN H X, TIAN N M, LI L P, et al. Poverty control policy may affect the transition of geological disaster risk in China[J]. Humanities and Social Sciences Communications, 2022, 9(1): 1-7. doi: 10.1057/s41599-021-01017-z
    [5]
    LAN H X, ZHAO X X, MACCIOTTA R, et al. The cyclic expansion and contraction characteristics of a loess slope and implications for slope stability[J]. Scientific Reports, 2021, 11(1): 2250. doi: 10.1038/s41598-021-81821-4
    [6]
    BAO H, LIU C Q, LAN H X, et al. Time-dependency deterioration of polypropylene fiber reinforced soil and guar gum mixed soil in loess cut-slope protecting[J]. Engineering Geology, 2022, 311: 106895. doi: 10.1016/j.enggeo.2022.106895
    [7]
    包含, 马扬帆, 兰恒星, 等. 基于微结构量化的含渐变带黄土各向异性特征研究[J]. 中国公路学报, 2022, 35(10): 88-99. doi: 10.19721/j.cnki.1001-7372.2022.10.009

    BAO Han, MA Yangfan, LAN Hengxing, et al. Anisotropic characteristics of loess with gradation zone based on microstructure quantification[J]. China Journal of Highway and Transport, 2022, 35(10): 88-99. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2022.10.009
    [8]
    WANG W, WANG Y, SUN Q M, et al. Spatial variation of saturated hydraulic conductivity of a loess slope in the South Jingyang Plateau, China[J]. Engineering Geology, 2018, 236: 70-78. doi: 10.1016/j.enggeo.2017.08.002
    [9]
    洪勃, 李喜安, 王力, 等. 延安Q3原状黄土渗透各向异性及微结构分析[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1389-1397. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201905016.htm

    HONG Bo, LI Xian, WANG Li, et al. Permeability anisotropy and microstructure of Yan'an Q3 loess[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(5): 1389-1397. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201905016.htm
    [10]
    刘祖典. 黄土力学与工程[M]. 西安: 陕西科学技术出版社, 1997.

    LIU Zudian. Loess Mechanics and Engineering[M]. Xi'an: Shaanxi Science & Technology Press, 1997. (in Chinese)
    [11]
    姚志华, 陈正汉, 黄雪峰, 等. 非饱和原状和重塑Q3黄土渗水特性研究[J]. 岩土工程学报, 2012, 34(6): 1020-1027. http://cge.nhri.cn/cn/article/id/14601

    YAO Zhihua, CHEN Zhenghan, HUANG Xuefeng, et al. Hydraulic conductivity of unsaturated undisturbed and remolded Q3 loess[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1020-1027. (in Chinese) http://cge.nhri.cn/cn/article/id/14601
    [12]
    CHAN H T, KENNEY T C. Laboratory investigation of permeability ratio of new Liskeard varved soil[J]. Canadian Geotechnical Journal, 1973, 10(3): 453-472. doi: 10.1139/t73-038
    [13]
    HONG B, LI X, WANG L, et al. Temporal variation in the permeability anisotropy behavior of the Malan loess in northern Shaanxi Province, China: an experimental study[J]. Environmental Earth Sciences, 2019, 78(15): 1-12.
    [14]
    王铁行, 杨涛, 鲁洁. 干密度及冻融循环对黄土渗透性的各向异性影响[J]. 岩土力学, 2016, 37(增刊1): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1009.htm

    WANG Tiehang, YANG Tao, LU Jie. Influence of dry density and freezing-thawing cycles on anisotropic permeability of loess[J]. Rock and Soil Mechanics, 2016, 37(S1): 72-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1009.htm
    [15]
    张昭, 刘奉银, 齐吉琳, 等. 基于孔隙连通-迂曲参数表征土的非饱和渗透各向异性[J]. 岩土工程学报, 2018, 40(增刊1): 147-152. doi: 10.11779/CJGE2018S1024

    ZHANG Zhao, LIU Fengyin, QI Jilin, et al. Represention of anisotropy in unsaturated permeabilities for soils based on pore connectivity-tortuosity parameter[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 147-152. (in Chinese) doi: 10.11779/CJGE2018S1024
    [16]
    兰恒星, 周成虎, 伍法权, 等. GIS支持下的降雨型滑坡危险性空间分析预测[J]. 科学通报, 2003, 48(5): 507-512. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200305020.htm

    LAN Hengxing, ZHOU Chenghu, WU Faquan, et al. Spatial analysis and prediction of rainfall landslide risk supported by GIS[J]. Chinese Science Bulletin, 2003, 48(5): 507-512. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200305020.htm
    [17]
    LI X, LI L C, SONG Y X, et al. Characterization of the mechanisms underlying loess collapsibility for land-creation project in Shaanxi Province, China—a study from a micro perspective[J]. Engineering Geology, 2019, 249: 77-88. doi: 10.1016/j.enggeo.2018.12.024
    [18]
    张宗祜. 我国黄土类土显微结构的研究[J]. 地质学报, 1964, 38(3): 357-369, 375. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE196403008.htm

    ZHANG Zonghu. Study on microstructure of loess soil in China[J]. Acta Geologica Sinica, 1964, 38(3): 357-369, 375. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE196403008.htm
    [19]
    高国瑞. 中国黄土的微结构[J]. 科学通报, 1980, 25(20): 945-948. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198020010.htm

    GAO Guorui. Microstructure of loess in China[J]. Chinese Science Bulletin, 1980, 25(20): 945-948. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198020010.htm
    [20]
    雷祥义. 西安黄土显微结构类型[J]. 西北大学学报(自然科学版), 1983, 13(4): 56-65, 127. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ198304009.htm

    LEI Xiangyi. Type of the loess microtextures in Xian distrct[J]. Journal of Northwest University (Natural Science Edition), 1983, 13(4): 56-65, 127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ198304009.htm
    [21]
    LAN H X, CHEN J H, MACCIOTTA R. Universal confined tensile strength of intact rock[J]. Scientific Reports, 2019, 9(1): 6170. doi: 10.1038/s41598-019-42698-6
    [22]
    BAO H, QI Q, LAN H X, et al. Sliding mechanical properties of fault gouge studied from ring shear test-based microscopic morphology characterization[J]. Engineering Geology, 2020, 279: 105879. doi: 10.1016/j.enggeo.2020.105879
    [23]
    高英, 马艳霞, 张吾渝, 等. 西宁地区不同湿陷程度黄土的微观结构分析[J]. 长沙理工大学学报(自然科学版), 2020, 17(1): 65-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQG202001011.htm

    GAO Ying, MA Yanxia, ZHANG Wuyu, et al. Microstructure analysis of loess with different collapsibility in Xining area[J]. Journal of Changsha University of Science & Technology (Natural Science), 2020, 17(1): 65-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNQG202001011.htm
    [24]
    施斌. 黏性土击实过程中微观结构的定量评价[J]. 岩土工程学报, 1996, 18(4): 57-62. http://cge.nhri.cn/cn/article/id/8572

    SHI Bin. Quantitative assessment of changes of microstructure for clayey soil in the process of compaction[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 57-62. (in Chinese) http://cge.nhri.cn/cn/article/id/8572
    [25]
    WITT K J, BRAUNS J. Permeability-anisotropy due to particle shape[J]. Journal of Geotechnical Engineering, 1983, 109(9): 1181-1187.
    [26]
    XU P P, ZHANG Q Y, QIAN H, et al. Investigation into microscopic mechanisms of anisotropic saturated permeability of undisturbed Q2 loess[J]. Environmental Earth Sciences, 2020, 79(18): 1-13.
    [27]
    LI X A, LI L C. Quantification of the pore structures of Malan loess and the effects on loess permeability and environmental significance, Shaanxi Province, China: an experimental study[J]. Environmental Earth Sciences, 2017, 76(15): 1-14.
    [28]
    XU P P, ZHANG Q Y, QIAN H, et al. Microstructure and permeability evolution of remolded loess with different dry densities under saturated seepage[J]. Engineering Geology, 2021, 282: 105875.
    [29]
    BAO H, TANG M, LAN H X, et al. Soil erosion and its causes in high-filling body: a case study of a valley area on the Loess Plateau, China[J]. Journal of Mountain Science, 2023, 20(1): 182-196.
    [30]
    李喜安, 洪勃, 李林翠, 等. 黄土湿陷对渗透系数影响的试验研究[J]. 中国公路学报, 2017, 30(6): 198-208, 222. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201706002.htm

    LI Xian, HONG Bo, LI Lincui, et al. Experimental research on permeability coefficient under influence of loess collapsibility[J]. China Journal of Highway and Transport, 2017, 30(6): 198-208, 222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201706002.htm
    [31]
    李喜安, 黄润秋, 彭建兵, 等. 关于物理潜蚀作用及其概念模型的讨论[J]. 工程地质学报, 2010, 18(6): 880-886. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201006012.htm

    LI Xi'an, HUANG Runqiu, PENG Jianbing, et al. Establishment of conceptual models of physical sub-ground erosion[J]. Journal of Engineering Geology, 2010, 18(6): 880-886. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201006012.htm
    [32]
    MOORE C A, DONALDSON C F. Quantifying soil microstructure using fractals[J]. Géotechnique, 1995, 45(1): 105-116.
    [33]
    王玉涛, 刘小平, 曹晓毅. 基于主成分分析法的Q2黄土湿陷特性研究[J]. 水文地质工程地质, 2020, 47(4): 141-148. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202004017.htm

    WANG Yutao, LIU Xiaoping, CAO Xiaoyi. A study of the collapsibility of Q2 loess based on principal component analysis[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 141-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202004017.htm
    [34]
    刘颖. 黄土的渗透性[M]// 黄土基本性质的研究, 北京: 科学出版社, 1961.

    LIU Ying. Permeability of loess[M]// Study on Basic Properties of Loess, Beijing: Science Press, 1961. (in Chinese))
    [35]
    WANG L, LI X, ZHENG Z Y, et al. Analysis of the slope failure mechanism a under tunnel erosion environment in the south-eastern Loess Plateau in China[J]. Catena, 2022, 212: 106039.
    [36]
    王力, 李喜安, 何军, 等. 不同黏粒含量对黄土渗透系数影响的试验研究[J]. 水土保持通报, 2018, 38(2): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201802016.htm

    WANG Li, LI Xian, HE Jun, et al. Experimental study on permeability coefficient of loess with different clay content[J]. Bulletin of Soil and Water Conservation, 2018, 38(2): 95-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201802016.htm
    [37]
    JU X N, JIA Y H, LI T C, et al. Morphology and multifractal characteristics of soil pores and their functional implication[J]. Catena, 2021, 196: 104822.
    [38]
    郑颖人. 岩土塑性力学的新进展: 广义塑性力学[J]. 岩土工程学报, 2003, 25(1): 1-10. http://cge.nhri.cn/cn/article/id/11110

    ZHENG Yingren. New development of geotechnical plastic mechanics: generalized plastic mechanics[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(1): 1-10. (in Chinese) http://cge.nhri.cn/cn/article/id/11110

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return