• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HAN Huaxin, XIAO Chengzhi, DING Luqiang, CUI Feilong, WANG Zihan. Deformation analysis of geosynthetics-reinforced soil retaining wall considering coupling effects of reinforcement creep and temperature[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 816-825. DOI: 10.11779/CJGE20220116
Citation: HAN Huaxin, XIAO Chengzhi, DING Luqiang, CUI Feilong, WANG Zihan. Deformation analysis of geosynthetics-reinforced soil retaining wall considering coupling effects of reinforcement creep and temperature[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 816-825. DOI: 10.11779/CJGE20220116

Deformation analysis of geosynthetics-reinforced soil retaining wall considering coupling effects of reinforcement creep and temperature

More Information
  • Received Date: January 24, 2022
  • Available Online: April 16, 2023
  • By analyzing the existing creep test results and creep properties of geosynthetics, a constitutive model for reinforcement considering creep and temperature is estublished. Using the 2D-thermal transfer control equation, the finite difference formula is proposed to calculate the temperature in the geosynthetics-reinforced soil (GRS) retaining wall, and then the lateral deformations of the face of GRS wall and the maximum reinforcement strains are determined via the calculated temperature and the constitutive model. Subsequently, a comprehensive study is carried out to investigate the effects of the initial temperature, temperature amplitude, vertical spacing of reinforcement, surcharge, in-frictional angle and thermal conductivity of backfills on the deformation and reinforcement strains. The results show that the elevated temperature after construction causes the significant increase of the lateral deformations of face and reinforcement strains, and then the variation of deformation decreases with the elapsed time. Increasing the initial temperature induces the remarkable increase in the lateral deformation at the very beginning, whereas the long-term deformation increases with the increase of the temperature amplitude. Increasing the surcharge on the top surface or vertical spacing, or reducing the in-frictional angle of backfills results in obvious increase of the lateral deformations. In addition, the thermal conductivity of backfills has small effects on the lateral deformations of face and the maximum reinforcement strains. Under the action of cyclic ambient temperature, the ratio of the maximum lateral deformation to the wall height, δmax/H, falls in the range of 0.9% to 1.5%, and the maximum reinforcement strains, which occurr adjacent to the face of the retaining wall, reach almost 10% of the limited value. Thus, it is necessary to pay more attention to the effects of the long-term properties of reinforcement near the wall face on the deformation and stability of the GRS walls.
  • [1]
    KOERNER R M. Design with Geosynthetics[M]. 5th ed. Englewood Cliffs, New Jersey: Prentice-Hall Inc, 2010.
    [2]
    铁路路基支挡结构设计规范: TB 10025—2019[S]. 北京: 中国铁道出版社, 2019.

    Code for Design of Retaining Structures of Railway Earthworks: TB 10025—2019[S]. Beijing: China Railway Publishing House, 2019, (in Chinese)
    [3]
    KOERNER R M, et al. A data base, statistics and recommendations regarding 171 failed geosynthetic reinforced mechanically stabilized earth (MSE) walls[J]. Geotextiles and Geomembranes, 2013, 40: 20-27. doi: 10.1016/j.geotexmem.2013.06.001
    [4]
    FHWA-NHI-10-024. Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes: Volume Ⅰ[S]. Washington D C: Federal Highway Administration and Department of Transportation, 2009.
    [5]
    AASHTO. LRFD Bridge Design Guide Specifications for GFRP-Reinforced Concrete Bridge Decks and Traffic Railings[S]. Washington D C: AASHTO, 2009.
    [6]
    NCMA. Design Manual for Segmental Retaining Walls[S]. Washington D C: National Concrete Masonry Association, 2009.
    [7]
    GOURD J P, RATEL A, DELMAS P. Design of fabric retaining walls: the displacements method[C]// Third International Conference on Geotextiles and Geomembranes. Vienna, 1986: 289-294.
    [8]
    WU J T. Design and Construction of Low-Cost Retaining Walls: The Next Generation in Technology[R]. Colorado Transportation Institute, Denver, CO., 1994.
    [9]
    JEWELL R A, MILLIGAN G W. Deformation calculation for reinforced soil walls[C]// International Conference on Soil Mechanics and Foundation Engineering, 1989: 1259-1262.
    [10]
    WU J, PHAM T. An analytical model for calculating lateral movement of a geosynthetic-reinforced soil (GRS) wall with modular block facing[J]. International Journal of Geotechnical Engineering, 2010, 4(4): 527-535. doi: 10.3328/IJGE.2010.04.04.527-535
    [11]
    ADAMS T M, LILLIS C P, WU J T, et al. Vegas Mini Pier experiment and postulate of zero volume change[C]// Proc 7th Int Conf Geosynthetics Swets and Zeitlinger, Lisse, 2002: 389-394.
    [12]
    SAWICKI A. Creep of geosynthetic reinforced soil retaining walls[J]. Geotextiles and Geomembranes, 1999, 17(1): 51-65. doi: 10.1016/S0266-1144(98)00027-2
    [13]
    MURRAY R T, et al. Temperature distributions in reinforced soil retaining walls[J]. Geotextiles and Geomembranes, 1988, 7(1/2): 33-50.
    [14]
    CUI F, XIAO C, HAN J, et al. Effects of freeze-thaw cycles on performance of laboratory geogrid-reinforced retaining walls[J]. Geosynthetics International, 2022, https://doi.org/10.1680/jgein.21.00012.
    [15]
    SEGRESTIN P, JAILLOUX J. Temperature in soils and its effect on the ageing of synthetic materials[J]. Geotextiles and Geomembranes, 1988, 7(1/2): 51-69.
    [16]
    丁金华, 童军, 张静, 等. 环境因素对土工格栅蠕变特性的影响[J]. 岩土力学, 2012, 33(7): 2048-2054. doi: 10.3969/j.issn.1000-7598.2012.07.020

    DING Jinhua, TONG Jun, ZHANG Jing, et al. Study of influence of environmental factors on geogrid creep property[J]. Rock and Soil Mechanics, 2012, 33(7): 2048-2054. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.07.020
    [17]
    肖成志, 栾茂田, 杨庆, 等. 土工格栅经验型蠕变模型及其参数试验[J]. 中国公路学报, 2006, 19(6): 19-24. doi: 10.3321/j.issn:1001-7372.2006.06.004

    XIAO Chengzhi, LUAN Maotian, YANG Qing, et al. Experiment on empirical creep model and its parameters of geogrids[J]. China Journal of Highway and Transport, 2006, 19(6): 19-24. (in Chinese) doi: 10.3321/j.issn:1001-7372.2006.06.004
    [18]
    YARIVAND A, BEHNIA C, BAKHTIYARI S, et al. Performance of geosynthetic reinforced soil bridge abutments with modular block facing under fire scenarios[J]. Computers and Geotechnics, 2017, 85: 28-40. doi: 10.1016/j.compgeo.2016.12.004
    [19]
    SRUNGERI S G, ALEKSEEV N N, KOVALENKO I A, et al. Creep behavior of geosynthetics by temperature accelerated testing[J]. Magazine of Civil Engineering, 2017, 76(8): 255-265.
    [20]
    ZHAO Y, LU Z, YAO H L, et al. A fast and precise methodology of creep master curve construction for geosynthetics based on stepped isothermal method (SIM)[J]. Geotextiles and Geomembranes, 2021, 49(4): 952-962. doi: 10.1016/j.geotexmem.2021.01.005
    [21]
    CHANTACHOT T, KONGKITKUL W, TATSUOKA F. Effects of temperature rise on load-strain-time behaviour of geogrids and simulations[J]. Geosynthetics International, 2018, 25(3): 287-303 doi: 10.1680/jgein.18.00008
    [22]
    ZHANG Z. Experimental study on the influence of temperature and confined load on the creep characteristics of geogrid[J]. Advanced Materials Research, 2014(912/913/914): 1629-1632.
    [23]
    李乔一. 土工格栅蠕变特性试验研究[D]. 石家庄: 石家庄铁道大学, 2018.

    LI Qiaoyi. Creep Tension Testing of Geosynthetic[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2018. (in Chinese)
    [24]
    ALLEN T M, BATHURST R J. Geosynthetic reinforcement stiffness characterization for MSE wall design[J]. Geosynthetics International, 2019, 26(6): 592-610. doi: 10.1680/jgein.19.00041
    [25]
    FINNIGAN J A. The creep behaviour of high tenacity yarns and fabrics used in civil engineering application[C]// Proceedings of the International Conference on the Use of Fabrics in Geotechnics. Paris, 1977: 305-309.
    [26]
    FINDLEY W N. 26-Year creep and recovery of poly(vinyl chloride) and polyethylene[J]. Polymer Engineering and Science, 1987, 27(8): 582-585. doi: 10.1002/pen.760270809
    [27]
    DAS B M. Creep behavior of geotextiles[C]// Proceedings of the 4th International Conference on Geotextiles. The Hague, 1990: 667-674.
    [28]
    刘华北. 考虑蠕变、地震效应的土工格栅砂性土加筋挡墙弹塑性有限元分析[J]. 岩土工程学报, 2007, 29(6): 917-921. doi: 10.3321/j.issn:1000-4548.2007.06.022

    LIU Huabei. Elasto-plastic finite element analysis of geogrid-reinforced sandy soil retaining walls considering effect of creep and earthquake[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 917-921. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.06.022
    [29]
    栾茂田, 肖成志, 杨庆, 等. 土工格栅蠕变特性的试验研究及粘弹性本构模型[J]. 岩土力学, 2005, 26(2): 187-192. doi: 10.3969/j.issn.1000-7598.2005.02.004

    LUAN Maotian, XIAO Chengzhi, YANG Qing, et al. Experimental study on creep properties and viscoelasticity constitutive relationship for geogrids[J]. Rock and Soil Mechanics, 2005, 26(2): 187-192. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.02.004
    [30]
    MONTRI D. Modeling Time-Dependent Behavior of Geogrids and Its Application to Geosynthetically Reinforced Walls[D]. USA: Dissertation of University of Delaware, 2001.
    [31]
    郭军辉, 程卫国, 张滨. 土工格栅低温下蠕变特性试验研究[J]. 岩土力学, 2009, 30(10): 3009-3012. doi: 10.3969/j.issn.1000-7598.2009.10.021

    GUO Junhui, CHENG Weiguo, ZHANG Bin. Research on creep property of geogrids at a low temperature[J]. Rock and Soil Mechanics, 2009, 30(10): 3009-3012. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.10.021
    [32]
    ZORNBERG J G, BYLER B R, KNUDSEN J W. Creep of geotextiles using time-temperature superposition methods[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(11): 1158-1168. [ doi: 10.1061/(ASCE)1090-0241(2004)130:11(1158)
    [33]
    谢得璞. 北方寒冷地区高速公路钢桥桥面铺装层稳定性评价[D]. 沈阳: 沈阳建筑大学, 2018.

    XIE Depu. Stability Evaluation of Bridge Deck Pavement of Highway Steel Bridge in Cold Region of North China[D]. Shenyang: Shenyang Jianzhu University, 2018. (in Chinese)
    [34]
    XIAO C Z, et al. Case history on failure of geosynthetics-reinforced soil bridge approach retaining walls[J]. Geotextiles and Geomembranes, 2021, 49(6): 1585-1599. doi: 10.1016/j.geotexmem.2021.08.001
  • Related Articles

    [1]WANG Tao, FAN Hong, WANG Kangren, ZHOU Guoqing, WANG Liangliang. A unified constitutive model for dual-yield surface for warm frozen soil and its verification[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 135-143. DOI: 10.11779/CJGE20231031
    [2]FU Zhongzhi, ZHANG Yijiang, CHEN Jinyi, WANG Yongsheng. Influences of constitutive model for rockfill materials on calculated stress and deformation of concrete-faced dams[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2089-2100. DOI: 10.11779/CJGE20230644
    [3]CHEN Sheng-shui, FU Zhong-zhi, SHI Bei-xiao, YUAN Jing. Elastoplasticity constitutive model considering loading-induced deformation and creep behavior of coarse granular soils and its application[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 601-609. DOI: 10.11779/CJGE201904001
    [4]HAN Hua-qiang, CHEN Sheng-shui, FU Hua, LING Hua. Effect of previous cyclic loading on deformation characteristics of dam materials[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 263-268. DOI: 10.11779/CJGE201502008
    [5]LI Ming, ZHANG Ga, LEE C F, ZHANG Jian-min. Centrifugal model tests on excavation-induced deformation of slopes[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 667.
    [6]Degrading deformation of rockfill materials and its constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
    [7]GAO Changsheng, WEI Rulong, CHEN Shengshui. Centrifugal model tests on deformation of slopes reinforced with piles[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 145-148.
    [8]HAN Huaqiang, CHEN Shengshui, ZHENG Chengfeng. Experimental study on strength and deformation of unsaturated expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1872-1876.
    [9]YU Jin, ZHAO Xiaobao, ZHAO Weibing, LI Xiaozhao, GUAN Yunfei. Improved nonlinear elastic constitutive model for normal deformation of rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1316-1321.
    [10]XIE Weiping, WANG Guobo, YU Yanli. Calculation of soil deformation induced by moving load[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 318-322.
  • Cited by

    Periodical cited type(3)

    1. 陈建,刘泽,童乐,曹峥,李梦竹. 不同加筋条件对高填方路堤变形控制效果数值分析. 市政技术. 2024(12): 109-116 .
    2. 张凯封. 边坡工程中支护结构形式浅析. 四川建筑. 2023(05): 119-120 .
    3. 李丹,易杨,罗琛,吴迪,徐超,吴建建. 土工织物顶压蠕变特性与折减系数研究. 水利学报. 2023(10): 1210-1220+1235 .

    Other cited types(4)

Catalog

    Article views (236) PDF downloads (80) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return