Citation: | HAN Huaxin, XIAO Chengzhi, DING Luqiang, CUI Feilong, WANG Zihan. Deformation analysis of geosynthetics-reinforced soil retaining wall considering coupling effects of reinforcement creep and temperature[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 816-825. DOI: 10.11779/CJGE20220116 |
[1] |
KOERNER R M. Design with Geosynthetics[M]. 5th ed. Englewood Cliffs, New Jersey: Prentice-Hall Inc, 2010.
|
[2] |
铁路路基支挡结构设计规范: TB 10025—2019[S]. 北京: 中国铁道出版社, 2019.
Code for Design of Retaining Structures of Railway Earthworks: TB 10025—2019[S]. Beijing: China Railway Publishing House, 2019, (in Chinese)
|
[3] |
KOERNER R M, et al. A data base, statistics and recommendations regarding 171 failed geosynthetic reinforced mechanically stabilized earth (MSE) walls[J]. Geotextiles and Geomembranes, 2013, 40: 20-27. doi: 10.1016/j.geotexmem.2013.06.001
|
[4] |
FHWA-NHI-10-024. Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes: Volume Ⅰ[S]. Washington D C: Federal Highway Administration and Department of Transportation, 2009.
|
[5] |
AASHTO. LRFD Bridge Design Guide Specifications for GFRP-Reinforced Concrete Bridge Decks and Traffic Railings[S]. Washington D C: AASHTO, 2009.
|
[6] |
NCMA. Design Manual for Segmental Retaining Walls[S]. Washington D C: National Concrete Masonry Association, 2009.
|
[7] |
GOURD J P, RATEL A, DELMAS P. Design of fabric retaining walls: the displacements method[C]// Third International Conference on Geotextiles and Geomembranes. Vienna, 1986: 289-294.
|
[8] |
WU J T. Design and Construction of Low-Cost Retaining Walls: The Next Generation in Technology[R]. Colorado Transportation Institute, Denver, CO., 1994.
|
[9] |
JEWELL R A, MILLIGAN G W. Deformation calculation for reinforced soil walls[C]// International Conference on Soil Mechanics and Foundation Engineering, 1989: 1259-1262.
|
[10] |
WU J, PHAM T. An analytical model for calculating lateral movement of a geosynthetic-reinforced soil (GRS) wall with modular block facing[J]. International Journal of Geotechnical Engineering, 2010, 4(4): 527-535. doi: 10.3328/IJGE.2010.04.04.527-535
|
[11] |
ADAMS T M, LILLIS C P, WU J T, et al. Vegas Mini Pier experiment and postulate of zero volume change[C]// Proc 7th Int Conf Geosynthetics Swets and Zeitlinger, Lisse, 2002: 389-394.
|
[12] |
SAWICKI A. Creep of geosynthetic reinforced soil retaining walls[J]. Geotextiles and Geomembranes, 1999, 17(1): 51-65. doi: 10.1016/S0266-1144(98)00027-2
|
[13] |
MURRAY R T, et al. Temperature distributions in reinforced soil retaining walls[J]. Geotextiles and Geomembranes, 1988, 7(1/2): 33-50.
|
[14] |
CUI F, XIAO C, HAN J, et al. Effects of freeze-thaw cycles on performance of laboratory geogrid-reinforced retaining walls[J]. Geosynthetics International, 2022, https://doi.org/10.1680/jgein.21.00012.
|
[15] |
SEGRESTIN P, JAILLOUX J. Temperature in soils and its effect on the ageing of synthetic materials[J]. Geotextiles and Geomembranes, 1988, 7(1/2): 51-69.
|
[16] |
丁金华, 童军, 张静, 等. 环境因素对土工格栅蠕变特性的影响[J]. 岩土力学, 2012, 33(7): 2048-2054. doi: 10.3969/j.issn.1000-7598.2012.07.020
DING Jinhua, TONG Jun, ZHANG Jing, et al. Study of influence of environmental factors on geogrid creep property[J]. Rock and Soil Mechanics, 2012, 33(7): 2048-2054. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.07.020
|
[17] |
肖成志, 栾茂田, 杨庆, 等. 土工格栅经验型蠕变模型及其参数试验[J]. 中国公路学报, 2006, 19(6): 19-24. doi: 10.3321/j.issn:1001-7372.2006.06.004
XIAO Chengzhi, LUAN Maotian, YANG Qing, et al. Experiment on empirical creep model and its parameters of geogrids[J]. China Journal of Highway and Transport, 2006, 19(6): 19-24. (in Chinese) doi: 10.3321/j.issn:1001-7372.2006.06.004
|
[18] |
YARIVAND A, BEHNIA C, BAKHTIYARI S, et al. Performance of geosynthetic reinforced soil bridge abutments with modular block facing under fire scenarios[J]. Computers and Geotechnics, 2017, 85: 28-40. doi: 10.1016/j.compgeo.2016.12.004
|
[19] |
SRUNGERI S G, ALEKSEEV N N, KOVALENKO I A, et al. Creep behavior of geosynthetics by temperature accelerated testing[J]. Magazine of Civil Engineering, 2017, 76(8): 255-265.
|
[20] |
ZHAO Y, LU Z, YAO H L, et al. A fast and precise methodology of creep master curve construction for geosynthetics based on stepped isothermal method (SIM)[J]. Geotextiles and Geomembranes, 2021, 49(4): 952-962. doi: 10.1016/j.geotexmem.2021.01.005
|
[21] |
CHANTACHOT T, KONGKITKUL W, TATSUOKA F. Effects of temperature rise on load-strain-time behaviour of geogrids and simulations[J]. Geosynthetics International, 2018, 25(3): 287-303 doi: 10.1680/jgein.18.00008
|
[22] |
ZHANG Z. Experimental study on the influence of temperature and confined load on the creep characteristics of geogrid[J]. Advanced Materials Research, 2014(912/913/914): 1629-1632.
|
[23] |
李乔一. 土工格栅蠕变特性试验研究[D]. 石家庄: 石家庄铁道大学, 2018.
LI Qiaoyi. Creep Tension Testing of Geosynthetic[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2018. (in Chinese)
|
[24] |
ALLEN T M, BATHURST R J. Geosynthetic reinforcement stiffness characterization for MSE wall design[J]. Geosynthetics International, 2019, 26(6): 592-610. doi: 10.1680/jgein.19.00041
|
[25] |
FINNIGAN J A. The creep behaviour of high tenacity yarns and fabrics used in civil engineering application[C]// Proceedings of the International Conference on the Use of Fabrics in Geotechnics. Paris, 1977: 305-309.
|
[26] |
FINDLEY W N. 26-Year creep and recovery of poly(vinyl chloride) and polyethylene[J]. Polymer Engineering and Science, 1987, 27(8): 582-585. doi: 10.1002/pen.760270809
|
[27] |
DAS B M. Creep behavior of geotextiles[C]// Proceedings of the 4th International Conference on Geotextiles. The Hague, 1990: 667-674.
|
[28] |
刘华北. 考虑蠕变、地震效应的土工格栅砂性土加筋挡墙弹塑性有限元分析[J]. 岩土工程学报, 2007, 29(6): 917-921. doi: 10.3321/j.issn:1000-4548.2007.06.022
LIU Huabei. Elasto-plastic finite element analysis of geogrid-reinforced sandy soil retaining walls considering effect of creep and earthquake[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 917-921. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.06.022
|
[29] |
栾茂田, 肖成志, 杨庆, 等. 土工格栅蠕变特性的试验研究及粘弹性本构模型[J]. 岩土力学, 2005, 26(2): 187-192. doi: 10.3969/j.issn.1000-7598.2005.02.004
LUAN Maotian, XIAO Chengzhi, YANG Qing, et al. Experimental study on creep properties and viscoelasticity constitutive relationship for geogrids[J]. Rock and Soil Mechanics, 2005, 26(2): 187-192. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.02.004
|
[30] |
MONTRI D. Modeling Time-Dependent Behavior of Geogrids and Its Application to Geosynthetically Reinforced Walls[D]. USA: Dissertation of University of Delaware, 2001.
|
[31] |
郭军辉, 程卫国, 张滨. 土工格栅低温下蠕变特性试验研究[J]. 岩土力学, 2009, 30(10): 3009-3012. doi: 10.3969/j.issn.1000-7598.2009.10.021
GUO Junhui, CHENG Weiguo, ZHANG Bin. Research on creep property of geogrids at a low temperature[J]. Rock and Soil Mechanics, 2009, 30(10): 3009-3012. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.10.021
|
[32] |
ZORNBERG J G, BYLER B R, KNUDSEN J W. Creep of geotextiles using time-temperature superposition methods[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(11): 1158-1168. [ doi: 10.1061/(ASCE)1090-0241(2004)130:11(1158)
|
[33] |
谢得璞. 北方寒冷地区高速公路钢桥桥面铺装层稳定性评价[D]. 沈阳: 沈阳建筑大学, 2018.
XIE Depu. Stability Evaluation of Bridge Deck Pavement of Highway Steel Bridge in Cold Region of North China[D]. Shenyang: Shenyang Jianzhu University, 2018. (in Chinese)
|
[34] |
XIAO C Z, et al. Case history on failure of geosynthetics-reinforced soil bridge approach retaining walls[J]. Geotextiles and Geomembranes, 2021, 49(6): 1585-1599. doi: 10.1016/j.geotexmem.2021.08.001
|
[1] | WANG Tao, FAN Hong, WANG Kangren, ZHOU Guoqing, WANG Liangliang. A unified constitutive model for dual-yield surface for warm frozen soil and its verification[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 135-143. DOI: 10.11779/CJGE20231031 |
[2] | FU Zhongzhi, ZHANG Yijiang, CHEN Jinyi, WANG Yongsheng. Influences of constitutive model for rockfill materials on calculated stress and deformation of concrete-faced dams[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2089-2100. DOI: 10.11779/CJGE20230644 |
[3] | CHEN Sheng-shui, FU Zhong-zhi, SHI Bei-xiao, YUAN Jing. Elastoplasticity constitutive model considering loading-induced deformation and creep behavior of coarse granular soils and its application[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 601-609. DOI: 10.11779/CJGE201904001 |
[4] | HAN Hua-qiang, CHEN Sheng-shui, FU Hua, LING Hua. Effect of previous cyclic loading on deformation characteristics of dam materials[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 263-268. DOI: 10.11779/CJGE201502008 |
[5] | LI Ming, ZHANG Ga, LEE C F, ZHANG Jian-min. Centrifugal model tests on excavation-induced deformation of slopes[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 667. |
[6] | Degrading deformation of rockfill materials and its constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1). |
[7] | GAO Changsheng, WEI Rulong, CHEN Shengshui. Centrifugal model tests on deformation of slopes reinforced with piles[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 145-148. |
[8] | HAN Huaqiang, CHEN Shengshui, ZHENG Chengfeng. Experimental study on strength and deformation of unsaturated expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1872-1876. |
[9] | YU Jin, ZHAO Xiaobao, ZHAO Weibing, LI Xiaozhao, GUAN Yunfei. Improved nonlinear elastic constitutive model for normal deformation of rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1316-1321. |
[10] | XIE Weiping, WANG Guobo, YU Yanli. Calculation of soil deformation induced by moving load[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 318-322. |
1. |
陈建,刘泽,童乐,曹峥,李梦竹. 不同加筋条件对高填方路堤变形控制效果数值分析. 市政技术. 2024(12): 109-116 .
![]() | |
2. |
张凯封. 边坡工程中支护结构形式浅析. 四川建筑. 2023(05): 119-120 .
![]() | |
3. |
李丹,易杨,罗琛,吴迪,徐超,吴建建. 土工织物顶压蠕变特性与折减系数研究. 水利学报. 2023(10): 1210-1220+1235 .
![]() |