Citation: | QIAN Jiangu, LIN Zhiqiang. Shear strength behaviors of unsaturated expansive soils with dual-porosity structure[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 486-494. DOI: 10.11779/CJGE20220112 |
[1] |
陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272. doi: 10.11779/CJGE201402001
CHEN Zhenghan. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272. (in Chinese) doi: 10.11779/CJGE201402001
|
[2] |
FREDLUND D G, RAHARDJO H. Soil Mechanics for Unsaturated Soils[M]. New York: Wiley, 1993
|
[3] |
SHENG D C, ZHOU A N, FREDLUND D G. Shear strength criteria for unsaturated soils[J]. Geotechnical and Geological Engineering, 2011, 29(2): 145-159. doi: 10.1007/s10706-009-9276-x
|
[4] |
翟钱, 戴国亮, 赵学亮. 土-水特征曲线对非饱和砂土抗剪强度的影响[J]. 岩土工程学报, 2020, 42(7): 1341-1349. doi: 10.11779/CJGE202007018
ZHAI Qian, DAI Guoliang, ZHAO Xueliang. Effect of soil-water characteristic curve on shear strength of unsaturated sandy soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1341-1349. (in Chinese) doi: 10.11779/CJGE202007018
|
[5] |
林志强, 钱建固, 时振昊. 毛细-吸附作用下考虑孔隙比影响的单/双峰土体持水曲线模型[J]. 岩土力学, 2021, 42(9): 2499-2506. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202109017.htm
LIN Zhiqiang, QIAN Jiangu, SHI Zhenhao. Modeling unimodal/bimodal soil-water retention curves considering the influence of void ratio under capillarity and adsorption[J]. Rock and Soil Mechanics, 2021, 42(9): 2499-2506. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202109017.htm
|
[6] |
ZHOU A N, HUANG R Q, SHENG D C. Capillary water retention curve and shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 2016, 53(6): 974-987. doi: 10.1139/cgj-2015-0322
|
[7] |
KONRAD J M, LEBEAU M. Capillary-based effective stress formulation for predicting shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 2015, 52(12): 2067-2076. doi: 10.1139/cgj-2014-0300
|
[8] |
高游, 孙德安. 单峰和双峰土水特征曲线基本参数的确定[J]. 岩土工程学报, 2017, 39(10): 1884-1891. doi: 10.11779/CJGE201710017
GAO You, SUN Dean. Determination of basic parameters of unimodal and bimodal soil water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1884-1891. (in Chinese) doi: 10.11779/CJGE201710017
|
[9] |
CAI G Q, ZHOU A N, LIU Y, et al. Soil water retention behavior and microstructure evolution of lateritic soil in the suction range of 0~286.7MPa[J]. Acta Geotechnica, 2020, 15(12): 3327-3341. doi: 10.1007/s11440-020-01011-w
|
[10] |
SATYANAGA A, RAHARDJO H. Unsaturated shear strength of soil with bimodal soil-water characteristic curve[J]. Géotechnique, 2019, 69(9): 828-832. doi: 10.1680/jgeot.17.P.108
|
[11] |
张俊然, 孙德安, 姜彤, 等. 宽广吸力范围内弱膨胀土的抗剪强度及其预测[J]. 岩土工程学报, 2016, 38(6): 1064-1070. doi: 10.11779/CJGE201606013
ZHANG Junran, SUN Dean, JIANG Tong, et al. Shear strength of weakly expansive soils and its prediction in a wide range of suction[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1064-1070. (in Chinese) doi: 10.11779/CJGE201606013
|
[12] |
张季如, 罗明星, 彭伟珂, 等. 不同应力路径下钙质砂力学特性的排水三轴试验研究[J]. 岩土工程学报, 2021, 43(4): 593-602. doi: 10.11779/CJGE202104001
ZHANG Jiru, LUO Mingxing, PENG Weike, et al. Drained triaxial tests on mechanical properties of calcareous sand under various stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 593-602. (in Chinese) doi: 10.11779/CJGE202104001
|
[13] |
徐筱, 赵成刚. 高吸力下黏性土的抗剪强度和体变特性[J]. 岩土力学, 2018, 39(5): 1598-1610. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805007.htm
XU Xiao, ZHAO Chenggang. Shear strength and volume change behavior of clay-rich soil at high suctions[J]. Rock and Soil Mechanics, 2018, 39(5): 1598-1610. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805007.htm
|
[14] |
GAO Y, SUN D A, ZHU Z C, et al. Hydromechanical behavior of unsaturated soil with different initial densities over a wide suction range[J]. Acta Geotechnica, 2019, 14(2): 417-428. doi: 10.1007/s11440-018-0662-5
|
[15] |
GAO Y, SUN D A, ZHOU A N. Hydromechanical behaviour of unsaturated soil with different specimen preparations[J]. Canadian Geotechnical Journal, 2016, 53(6): 909-917. doi: 10.1139/cgj-2015-0381
|
[16] |
GAO Y, SUN D A, ZHOU A N, et al. Predicting shear strength of unsaturated soils over wide suction range[J]. International Journal of Geomechanics, 2020, 20(2): 04019175. doi: 10.1061/(ASCE)GM.1943-5622.0001555
|
[17] |
VANAPALLI S K, FREDLUND D G, PUFAHL D E, et al. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 1996, 33(3): 379-392. doi: 10.1139/t96-060
|
[18] |
ZHAI Q, RAHARDJO H, SATYANAGA A, et al. Estimation of unsaturated shear strength from soil-water characteristic curve[J]. Acta Geotechnica, 2019, 14(6): 1977-1990. doi: 10.1007/s11440-019-00785-y
|
[19] |
MALEKSAEEDI E, NUTH M. Evaluation of capillary water retention effects on the development of the suction stress characteristic curve[J]. Canadian Geotechnical Journal, 2020, 57(10): 1439-1452. doi: 10.1139/cgj-2019-0326
|
[20] |
QIAN J G, LIN Z Q, SHI Z H. Soil-water retention curve model for fine-grained soils accounting for void ratio-dependent capillarity[J]. Canadian Geotechnical Journal, 2022, 59(4): 498-509. doi: 10.1139/cgj-2021-0042
|
[21] |
ZHAO H F, ZHANG L M, FREDLUND D G. Bimodal shear-strength behavior of unsaturated coarse-grained soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12): 2070-2081. doi: 10.1061/(ASCE)GT.1943-5606.0000937
|
[22] |
NG C W W, SADEGHI H, JAFARZADEH F. Compression and shear strength characteristics of compacted loess at high suctions[J]. Canadian Geotechnical Journal, 2017, 54(5): 690-699. doi: 10.1139/cgj-2016-0347
|
[23] |
Qian J G, Lin Z Q, Shi Z H. Experimental and modeling study of water-retention behavior of fine-grained soils with dual-porosity structures[J]. Acta Geotechnica, 2022, 17(8): 3245-3258. doi: 10.1007/s11440-022-01483-y
|
[24] |
孙德安, 张俊然, 吕海波. 全吸力范围南阳膨胀土的土-水特征曲线[J]. 岩土力学, 2013, 34(7): 1839-1846. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201307004.htm
SUN Dean, ZHANG Junran, LÜ Haibo. Soil-water characteristic curve of Nanyang expansive soil in full suction range[J]. Rock and Soil Mechanics, 2013, 34(7): 1839-1846. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201307004.htm
|
[25] |
SUN D A, GAO Y, ZHOU A N, et al. Soil-water retention curves and microstructures of undisturbed and compacted Guilin lateritic clay[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(2): 781-791.
|
[26] |
ZHANG J R, NIU G, LI X C, et al. Hydro-mechanical behavior of expansive soils with different dry densities over a wide suction range[J]. Acta Geotechnica, 2020, 15(1): 265-278.
|
[27] |
NG C W W, SADEGHI H, JAFARZADEH F, et al. Effect of microstructure on shear strength and dilatancy of unsaturated loess at high suctions[J]. Canadian Geotechnical Journal, 2020, 57(2): 221-235.
|
[28] |
PATIL U D, HOYOS L R, PUPPALA A J. Suitable shearing rate for triaxial testing of intermediate soils under vapor controlled medium to high suction range[C]// IFCEE 2015. San Antonio, Texas. Reston, VA: American Society of Civil Engineers, 2015.
|
[29] |
BISHOP A W. The influence of progressive failure on the choice of the method of stability analysis[J]. Géotechnique, 1971, 21(2): 168-172.
|
[30] |
PATIL U D, PUPPALA A J, HOYOS L R, et al. Modeling critical-state shear strength behavior of compacted silty sand via suction-controlled triaxial testing[J]. Engineering Geology, 2017, 231: 21-33.
|
[31] |
BISHOP A. The principle of effective stress[J]. Tek Ukebl 1959, 106: 859-863.
|
[32] |
LIN Z Q, QIAN J G, ZHAI Q. A novel hysteretic soil-water retention model with contact angle-dependent capillarity[J]. International Journal of Geomechanics, 2022, 22(2): 060210371-7.
|
[33] |
ZHOU A N, WU S S, LI J, et al. Including degree of capillary saturation into constitutive modelling of unsaturated soils[J]. Computers and Geotechnics, 2018, 95: 82-98.
|
[34] |
ESCARIO V, SÁEZ J. The shear strength of partly saturated soils[J]. Géotechnique, 1986, 36(3): 453-456.
|
[35] |
MA T T, WEI C F, YAO C, et al. Microstructural evolution of expansive clay during drying–wetting cycle[J]. Acta Geotechnica, 2020, 15(2/3/4): 2355-2366.
|
[36] |
SATYANAGA A, et al. Water characteristic curve of soil with bimodal grain-size distribution[J]. Computers and Geotechnics, 2013, 48: 51-61.
|
[37] |
MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11: 431-441.
|
[38] |
LU N. Generalized soil water retention equation for adsorption and capillarity[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11: 431-441.
|
[39] |
LU N, GODT J W, WU D T. A closed-form equation for effective stress in unsaturated soil[J]. Water Resources Research, 2010, 46(5): W05515.
|
[40] |
LU N, ZHANG C. Soil sorptive potential: concept, theory, and verification[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(4): 04019006.
|
[41] |
NG C W W, SADEGHI H, HOSSEN S K B, et al. Water retention and volumetric characteristics of intact and re-compacted loess[J]. Canadian Geotechnical Journal, 2016, 53(8): 1258-1269.
|
[42] |
孙德安, 何家浩, 高游. 广吸力范围内压实红黏土的强度特性[J]. 岩土力学, 2017, 38(增刊2): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2007.htm
SUN Dean, HE Jiahao, GAO You. Strength characteristics of compacted lateritic clay in a wide range of suction[J]. Rock and Soil Mechanics, 2017, 38(S2): 51-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2007.htm
|
[43] |
孙德安, 高游, 刘文捷, 等. 红黏土的土水特性及其孔隙分布[J]. 岩土工程学报, 2015, 37(2): 351-356. doi: 10.11779/CJGE201502020
SUN Dean, GAO You, LIU Wenjie, et al. Soil-water characteristics and pore-size distribution of lateritic clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 351-356. (in Chinese) doi: 10.11779/CJGE201502020
|