• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
QIAN Jiangu, LIN Zhiqiang. Shear strength behaviors of unsaturated expansive soils with dual-porosity structure[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 486-494. DOI: 10.11779/CJGE20220112
Citation: QIAN Jiangu, LIN Zhiqiang. Shear strength behaviors of unsaturated expansive soils with dual-porosity structure[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 486-494. DOI: 10.11779/CJGE20220112

Shear strength behaviors of unsaturated expansive soils with dual-porosity structure

More Information
  • Received Date: January 23, 2022
  • Available Online: March 15, 2023
  • A comprehensive set of experimental tests over a wide suction range and mechanism analysis are carried out to study the shear strength of Neixiang expansive soil with dual-porosity structure and bimodal soil-water retention curve (SWRC). Under the low and medium suction range, all the deviator stress versus strain curves show the strain-hardening behaviors with the shear contraction. Under the high suction range, the deviator stress versus strain curves show the post-peak strain softening stress-strain responses and the initial contraction of 1%~3% followed by the shear dilation. The specimens become stiffer with the increase of suction, and show a ductile failure mode with barrel shape or bulging at center under the low to medium suction ranges and strain localization with sliding surface under the high suction ranges. Also, the brittleness increases the amplitude of the post-peak softening, which is consistent with the increase of the difference between the magnitude of peak and the residual shear strength. Based on the bimodal SWRC considering capillarity and adsorption, the shear strength is analyzed and investigated in the capillary suction stress space for the soils with dual-porosity structure and bimodal SWRC. It is concluded that the strength shows the bi-linear characteristics if the capillary saturation has been used to upscale the suction from pore-scale stress to macroscopic one. The theoretical studies show that for the soils with double-porosity structure, the capillary suction stress under the low suction range can better characterize the macroscopic effective stress transferred between skeletons. The peak shear strength under the high suction range is provided by capillarity and closely related to the intra-aggregate cementation.
  • [1]
    陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272. doi: 10.11779/CJGE201402001

    CHEN Zhenghan. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272. (in Chinese) doi: 10.11779/CJGE201402001
    [2]
    FREDLUND D G, RAHARDJO H. Soil Mechanics for Unsaturated Soils[M]. New York: Wiley, 1993
    [3]
    SHENG D C, ZHOU A N, FREDLUND D G. Shear strength criteria for unsaturated soils[J]. Geotechnical and Geological Engineering, 2011, 29(2): 145-159. doi: 10.1007/s10706-009-9276-x
    [4]
    翟钱, 戴国亮, 赵学亮. 土-水特征曲线对非饱和砂土抗剪强度的影响[J]. 岩土工程学报, 2020, 42(7): 1341-1349. doi: 10.11779/CJGE202007018

    ZHAI Qian, DAI Guoliang, ZHAO Xueliang. Effect of soil-water characteristic curve on shear strength of unsaturated sandy soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1341-1349. (in Chinese) doi: 10.11779/CJGE202007018
    [5]
    林志强, 钱建固, 时振昊. 毛细-吸附作用下考虑孔隙比影响的单/双峰土体持水曲线模型[J]. 岩土力学, 2021, 42(9): 2499-2506. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202109017.htm

    LIN Zhiqiang, QIAN Jiangu, SHI Zhenhao. Modeling unimodal/bimodal soil-water retention curves considering the influence of void ratio under capillarity and adsorption[J]. Rock and Soil Mechanics, 2021, 42(9): 2499-2506. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202109017.htm
    [6]
    ZHOU A N, HUANG R Q, SHENG D C. Capillary water retention curve and shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 2016, 53(6): 974-987. doi: 10.1139/cgj-2015-0322
    [7]
    KONRAD J M, LEBEAU M. Capillary-based effective stress formulation for predicting shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 2015, 52(12): 2067-2076. doi: 10.1139/cgj-2014-0300
    [8]
    高游, 孙德安. 单峰和双峰土水特征曲线基本参数的确定[J]. 岩土工程学报, 2017, 39(10): 1884-1891. doi: 10.11779/CJGE201710017

    GAO You, SUN Dean. Determination of basic parameters of unimodal and bimodal soil water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1884-1891. (in Chinese) doi: 10.11779/CJGE201710017
    [9]
    CAI G Q, ZHOU A N, LIU Y, et al. Soil water retention behavior and microstructure evolution of lateritic soil in the suction range of 0~286.7MPa[J]. Acta Geotechnica, 2020, 15(12): 3327-3341. doi: 10.1007/s11440-020-01011-w
    [10]
    SATYANAGA A, RAHARDJO H. Unsaturated shear strength of soil with bimodal soil-water characteristic curve[J]. Géotechnique, 2019, 69(9): 828-832. doi: 10.1680/jgeot.17.P.108
    [11]
    张俊然, 孙德安, 姜彤, 等. 宽广吸力范围内弱膨胀土的抗剪强度及其预测[J]. 岩土工程学报, 2016, 38(6): 1064-1070. doi: 10.11779/CJGE201606013

    ZHANG Junran, SUN Dean, JIANG Tong, et al. Shear strength of weakly expansive soils and its prediction in a wide range of suction[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1064-1070. (in Chinese) doi: 10.11779/CJGE201606013
    [12]
    张季如, 罗明星, 彭伟珂, 等. 不同应力路径下钙质砂力学特性的排水三轴试验研究[J]. 岩土工程学报, 2021, 43(4): 593-602. doi: 10.11779/CJGE202104001

    ZHANG Jiru, LUO Mingxing, PENG Weike, et al. Drained triaxial tests on mechanical properties of calcareous sand under various stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 593-602. (in Chinese) doi: 10.11779/CJGE202104001
    [13]
    徐筱, 赵成刚. 高吸力下黏性土的抗剪强度和体变特性[J]. 岩土力学, 2018, 39(5): 1598-1610. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805007.htm

    XU Xiao, ZHAO Chenggang. Shear strength and volume change behavior of clay-rich soil at high suctions[J]. Rock and Soil Mechanics, 2018, 39(5): 1598-1610. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805007.htm
    [14]
    GAO Y, SUN D A, ZHU Z C, et al. Hydromechanical behavior of unsaturated soil with different initial densities over a wide suction range[J]. Acta Geotechnica, 2019, 14(2): 417-428. doi: 10.1007/s11440-018-0662-5
    [15]
    GAO Y, SUN D A, ZHOU A N. Hydromechanical behaviour of unsaturated soil with different specimen preparations[J]. Canadian Geotechnical Journal, 2016, 53(6): 909-917. doi: 10.1139/cgj-2015-0381
    [16]
    GAO Y, SUN D A, ZHOU A N, et al. Predicting shear strength of unsaturated soils over wide suction range[J]. International Journal of Geomechanics, 2020, 20(2): 04019175. doi: 10.1061/(ASCE)GM.1943-5622.0001555
    [17]
    VANAPALLI S K, FREDLUND D G, PUFAHL D E, et al. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 1996, 33(3): 379-392. doi: 10.1139/t96-060
    [18]
    ZHAI Q, RAHARDJO H, SATYANAGA A, et al. Estimation of unsaturated shear strength from soil-water characteristic curve[J]. Acta Geotechnica, 2019, 14(6): 1977-1990. doi: 10.1007/s11440-019-00785-y
    [19]
    MALEKSAEEDI E, NUTH M. Evaluation of capillary water retention effects on the development of the suction stress characteristic curve[J]. Canadian Geotechnical Journal, 2020, 57(10): 1439-1452. doi: 10.1139/cgj-2019-0326
    [20]
    QIAN J G, LIN Z Q, SHI Z H. Soil-water retention curve model for fine-grained soils accounting for void ratio-dependent capillarity[J]. Canadian Geotechnical Journal, 2022, 59(4): 498-509. doi: 10.1139/cgj-2021-0042
    [21]
    ZHAO H F, ZHANG L M, FREDLUND D G. Bimodal shear-strength behavior of unsaturated coarse-grained soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12): 2070-2081. doi: 10.1061/(ASCE)GT.1943-5606.0000937
    [22]
    NG C W W, SADEGHI H, JAFARZADEH F. Compression and shear strength characteristics of compacted loess at high suctions[J]. Canadian Geotechnical Journal, 2017, 54(5): 690-699. doi: 10.1139/cgj-2016-0347
    [23]
    Qian J G, Lin Z Q, Shi Z H. Experimental and modeling study of water-retention behavior of fine-grained soils with dual-porosity structures[J]. Acta Geotechnica, 2022, 17(8): 3245-3258. doi: 10.1007/s11440-022-01483-y
    [24]
    孙德安, 张俊然, 吕海波. 全吸力范围南阳膨胀土的土-水特征曲线[J]. 岩土力学, 2013, 34(7): 1839-1846. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201307004.htm

    SUN Dean, ZHANG Junran, LÜ Haibo. Soil-water characteristic curve of Nanyang expansive soil in full suction range[J]. Rock and Soil Mechanics, 2013, 34(7): 1839-1846. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201307004.htm
    [25]
    SUN D A, GAO Y, ZHOU A N, et al. Soil-water retention curves and microstructures of undisturbed and compacted Guilin lateritic clay[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(2): 781-791.
    [26]
    ZHANG J R, NIU G, LI X C, et al. Hydro-mechanical behavior of expansive soils with different dry densities over a wide suction range[J]. Acta Geotechnica, 2020, 15(1): 265-278.
    [27]
    NG C W W, SADEGHI H, JAFARZADEH F, et al. Effect of microstructure on shear strength and dilatancy of unsaturated loess at high suctions[J]. Canadian Geotechnical Journal, 2020, 57(2): 221-235.
    [28]
    PATIL U D, HOYOS L R, PUPPALA A J. Suitable shearing rate for triaxial testing of intermediate soils under vapor controlled medium to high suction range[C]// IFCEE 2015. San Antonio, Texas. Reston, VA: American Society of Civil Engineers, 2015.
    [29]
    BISHOP A W. The influence of progressive failure on the choice of the method of stability analysis[J]. Géotechnique, 1971, 21(2): 168-172.
    [30]
    PATIL U D, PUPPALA A J, HOYOS L R, et al. Modeling critical-state shear strength behavior of compacted silty sand via suction-controlled triaxial testing[J]. Engineering Geology, 2017, 231: 21-33.
    [31]
    BISHOP A. The principle of effective stress[J]. Tek Ukebl 1959, 106: 859-863.
    [32]
    LIN Z Q, QIAN J G, ZHAI Q. A novel hysteretic soil-water retention model with contact angle-dependent capillarity[J]. International Journal of Geomechanics, 2022, 22(2): 060210371-7.
    [33]
    ZHOU A N, WU S S, LI J, et al. Including degree of capillary saturation into constitutive modelling of unsaturated soils[J]. Computers and Geotechnics, 2018, 95: 82-98.
    [34]
    ESCARIO V, SÁEZ J. The shear strength of partly saturated soils[J]. Géotechnique, 1986, 36(3): 453-456.
    [35]
    MA T T, WEI C F, YAO C, et al. Microstructural evolution of expansive clay during drying–wetting cycle[J]. Acta Geotechnica, 2020, 15(2/3/4): 2355-2366.
    [36]
    SATYANAGA A, et al. Water characteristic curve of soil with bimodal grain-size distribution[J]. Computers and Geotechnics, 2013, 48: 51-61.
    [37]
    MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11: 431-441.
    [38]
    LU N. Generalized soil water retention equation for adsorption and capillarity[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11: 431-441.
    [39]
    LU N, GODT J W, WU D T. A closed-form equation for effective stress in unsaturated soil[J]. Water Resources Research, 2010, 46(5): W05515.
    [40]
    LU N, ZHANG C. Soil sorptive potential: concept, theory, and verification[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(4): 04019006.
    [41]
    NG C W W, SADEGHI H, HOSSEN S K B, et al. Water retention and volumetric characteristics of intact and re-compacted loess[J]. Canadian Geotechnical Journal, 2016, 53(8): 1258-1269.
    [42]
    孙德安, 何家浩, 高游. 广吸力范围内压实红黏土的强度特性[J]. 岩土力学, 2017, 38(增刊2): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2007.htm

    SUN Dean, HE Jiahao, GAO You. Strength characteristics of compacted lateritic clay in a wide range of suction[J]. Rock and Soil Mechanics, 2017, 38(S2): 51-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2007.htm
    [43]
    孙德安, 高游, 刘文捷, 等. 红黏土的土水特性及其孔隙分布[J]. 岩土工程学报, 2015, 37(2): 351-356. doi: 10.11779/CJGE201502020

    SUN Dean, GAO You, LIU Wenjie, et al. Soil-water characteristics and pore-size distribution of lateritic clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 351-356. (in Chinese) doi: 10.11779/CJGE201502020
  • Other Related Supplements

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return