• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIN Peng-zhen, MA Jun-jun. Design of backfill materials for driving steel sheet piles and pile forming tests in gravel layer[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 187-193. DOI: 10.11779/CJGE202201019
Citation: LIN Peng-zhen, MA Jun-jun. Design of backfill materials for driving steel sheet piles and pile forming tests in gravel layer[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 187-193. DOI: 10.11779/CJGE202201019

Design of backfill materials for driving steel sheet piles and pile forming tests in gravel layer

More Information
  • Received Date: January 22, 2021
  • Available Online: September 22, 2022
  • In order to solve the construction problem of inserting and driving steel sheet piles in pebble layer of rivers, a new type of lead-through backfill made of clay, bentonite, sawdust, cement and other materials is developed. Using the multi-factor orthogonal test method, the influence law and mechanism of the components of the new backfill materials on the compression, shear and impermeability properties of the backfill-solidified body are studied, and the construction mix proportion meeting the design requirements is given. The actual embedding effect of steel sheet piles is verified through the field comparative tests. The research results show that the content of silty clay has the most significant effect on the cohesion and compressive strength of the backfill aggregate, while the sawdust content has the most significant effect on the friction angle and impermeability of backfill aggregate. Under the maximum horizontal load, the average horizontal loading displacement, unloading displacement, compressive stress and proportional coefficient of horizontal reaction coefficient of foundation at the steel sheet pile top after using the new type lead hole backfill are 46%, 28%, 1.39%, and 2.8%, respectively, of the steel sheet pile after backfilling with on-site muck, which proves that the new type of backfill has greater soil stiffness and stronger resistance to deformation. The actual embedding effect of the piles is better. The new type of lead backfill has the comprehensive advantages of convenient material acquisition, convenient construction and good material performance, and can be popularized and applied in the construction of the same type of projects.
  • [1]
    贺振中. 甬台温客运专线灵江特大桥深水桥墩基础的施工[J]. 铁道建筑, 2007, 47(7): 9–10. doi: 10.3969/j.issn.1003-1995.2007.07.004

    HE Zhen-zhong. Construction of deep water pier foundation of Lingjiang Bridge on yongtaiwen passenger dedicated line[J]. Railway Engineering, 2007, 47(7): 9–10. (in Chinese) doi: 10.3969/j.issn.1003-1995.2007.07.004
    [2]
    谢海斌, 高敬. 钢板桩围堰技术在桥梁施工中的应用[J]. 交通世界, 2019(30): 110–111. https://www.cnki.com.cn/Article/CJFDTOTAL-JTSJ202127031.htm

    XIE Hai-bing. GAO Jing. Application of steel sheet pile cofferdam technology in bridge construction[J]. Transport World, 2019(30): 110–111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTSJ202127031.htm
    [3]
    陈永勇, 亢士杰. 钢板桩围堰在高桩承台施工中的应用[J]. 铁道标准设计, 2007, 51(12): 48–50. doi: 10.3969/j.issn.1004-2954.2007.12.017

    CHEN Yong-yong, KANG Shi-jie. Application of steel sheet pile cofferdam in construction of high pile cap[J]. Railway Standard Design, 2007, 51(12): 48–50. (in Chinese) doi: 10.3969/j.issn.1004-2954.2007.12.017
    [4]
    张骏. 桥梁深水基础钢板桩围堰受力分析与应用[J]. 桥梁建设, 2012, 42(5): 74–81. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201205014.htm

    ZHANG Jun. Force condition analysis and application of steel sheet pile cofferdam for bridge deepwater foundation[J]. Bridge Construction, 2012, 42(5): 74–81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201205014.htm
    [5]
    何永昶. 深水基础桥梁承台施工超长钢板桩围堰内支撑最优布置研究[J]. 铁道建筑, 2015, 55(3): 43–46. doi: 10.3969/j.issn.1003-1995.2015.03.13

    HE Yong-chang. Research on the optimal layout of the internal support of the super-long steel sheet pile cofferdam for the construction of the deep water foundation bridge platform[J]. Railway Engineering, 2015, 55(3): 43–46. (in Chinese) doi: 10.3969/j.issn.1003-1995.2015.03.13
    [6]
    倪波文. 复杂环境下桥梁承台钢板桩围堰的设计与施工[C]// 全国第二届品质工程论坛暨惠清高速公路绿色科技示范工程现场观摩会, 2019, 广州.

    NI Bo-wen. Design and Construction of Steel Sheet Pile Cofferdam for Bridge Caps in Complicated Environment[C]// China Highway and Transportation Society. The Second National Quality Engineering Forum and Huiqing Expressway Green Technology Demonstration Project Field Observation Conference Proceedings, 2019, Guangzhou.
    [7]
    骆冠勇, 曹洪, 潘泓, 等. 新光大桥桥墩钢板桩围堰的优化设计与监测[J]. 华南理工大学学报(自然科学版), 2006, 34(2): 124–129. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG200602024.htm

    LUO Guan-yong, CAO Hong, PAN Hong, et al. Optimal design and monitoring of steel sheet pile cofferdams of Xinguang bridge[J]. Journal of South China University of Technology (Natural Science Edition), 2006, 34(2): 124–129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG200602024.htm
    [8]
    李成伟. 拉森钢板桩围堰施工中引孔技术的应用[J]. 铁道建筑技术, 2014(增刊1): 35–37. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS2014S1011.htm

    LI Cheng-wei. The application of lead hole technology in the construction of Larsen steel sheet pile cofferdam[J]. Railway Construction Technology, 2014(S1): 35–37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS2014S1011.htm
    [9]
    刘云林, 蔡亚春. 浅谈冲击钻围堰引孔施工[J]. 价值工程, 2018, 37(26): 157–158.

    LIU Yun-lin, CAI Ya-chun. Construction of drilling holes for impact drilling cofferdam[J]. Value Engineering, 2018, 37(26): 157–158. (in Chinese)
    [10]
    姚志安, 陈炳耀. 深中通道伶仃洋大桥东锚碇基坑支护施工关键技术[J]. 桥梁建设, 2020, 50(3): 105–110. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202003017.htm

    YAO Zhi-an CHEN Bing-yao. Key construction techniques for foundation pit supporting structure of east anchor block of Lingdingyang Bridge[J]. Bridge Construction, 2020, 50(3): 105–110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202003017.htm
    [11]
    张春林. 钢板桩引孔围堰工艺在较硬岩地层中的应用[J]. 中国水运(下半月), 2018, 18(1): 234–236. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201801104.htm

    ZHANG Chun-lin. Application of steel sheet pile guide hole cofferdam technology in hard rock stratum[J]. China Water Transport, 2018, 18(1): 234–236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201801104.htm
    [12]
    黄松雄. 深基坑水中承台引孔钢板桩围堰的设计与施工[J]. 广东公路交通, 2020, 46(5): 37–42. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGT202005008.htm

    HUANG Song-xiong. Design and construction technology of steel plate pile cofferdam for bearing platform in deep foundation pit[J]. Guangdong Highway Communications, 2020, 46(5): 37–42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDGT202005008.htm
    [13]
    孔巍, 付晓超, 周冀伟, 等. 双层拉森钢板桩围堰在河道基坑施工中的应用技术[J]. 施工技术, 2018, 47(4): 56–60. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS2018S4013.htm

    KONG Wei, FU Xiao-chao, ZHOU Ji-wei, et al. Application technology of double-layer larsen steel sheet pile cofferdam in river foundation excavation construction[J]. Construction Technology, 2018, 47(4): 56–60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS2018S4013.htm
    [14]
    徐超, 黄亮, 邢皓枫. 水泥-膨润土泥浆配比对防渗墙渗透性能的影响[J]. 岩土力学, 2010, 31(2): 422–426. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201002020.htm

    XU Chao, HUANG Liang, XING Hao-feng. Influence of cement-bentonite slurry mixing ratio on permeability of cutoff wall[J]. Rock and Soil Mechanics, 2010, 31(2): 422–426. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201002020.htm
    [15]
    周瑶. 自凝灰浆防渗性能提高的试验研究[D]. 北京: 中国地质大学(北京), 2017.

    ZHOU Yao. Experimental Research on Improving Impermeability of Self-Curing Mortar[D]. Beijing: China University of Geosciences, 2017. (in Chinese)
    [16]
    陈红娟, 李小军, 闫维明, 等. 锯末混合土场地模型振动台试验研究[J]. 岩土工程学报, 2017, 39(11): 2068–2077. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201711017.htm

    CHEN Hong-juan, LI Xiao-jun, YAN Wei-ming, et al. Shaking table tests on sawdust-mixed clay site[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2068–2077. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201711017.htm
    [17]
    代树红, 王浩然, 韩荣军, 等. 流–固耦合模型试验相似材料研究[J/OL]. 岩土力学, 2020, 41(增刊2): 1-8[2020-11- 13]. https://doi.org/10.16285/j.rsm.2019. 1933.

    DAI Shuhong, WANG Hao-ran, HAN Rong-jun, et al. Properties of similar materials used in fluid-solid coupling model test[J/OL]. Rock and Soil Mechanics, 2020, 41(S2): 1-8[2020-11-13]. https://doi.org/10.16285/j.rsm.2019. 1933. (in Chinese)
    [18]
    水泥土配合比设计规程: JGJ/T 233—2011[S]. 2011.

    Specification for Mix Proportion Test of Cement-mixed Soil: JGJ/T 233—2011[S]. 2011. (in Chinese)
    [19]
    铁路桥涵地基和基础设计规范: TB 10093—2017[S]. 2017.

    Code for Design on Subsoil and Foundation of Railway Bridge and Culvert: TB 10093—2017[S]. 2017. (in Chinese)

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return