• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SUN Ping, ZHANG Qiang, CHEN Zu-yu, WANG Yu-jie. Three-dimensional rigid limit equilibrium analysis method for multi-block sliding in arch dam abutment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 144-152. DOI: 10.11779/CJGE202201014
Citation: SUN Ping, ZHANG Qiang, CHEN Zu-yu, WANG Yu-jie. Three-dimensional rigid limit equilibrium analysis method for multi-block sliding in arch dam abutment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 144-152. DOI: 10.11779/CJGE202201014

Three-dimensional rigid limit equilibrium analysis method for multi-block sliding in arch dam abutment

More Information
  • Received Date: February 18, 2021
  • Available Online: September 22, 2022
  • Multi-block sliding is a common and important failure mode in arch dam abutment. The current stability analysis methods established generally have certain deficiencies: a lot of assumptions must be introduced to make the problem static, or some methods only discuss that the sliding mode of the individual block is double-face sliding along the bottom and lateral slip surface. These methods are not suitable for solving the multi-block sliding problems of arch dam abutment. A new 3D limit equilibrium method with a strict theoretical basis and simple calculation steps is proposed. More specifically, considering that the sliding mode of each block is double-face sliding and single-face sliding, the method involves converting the multi-block stability analysis to a non-linear minimum problem containing several degrees of freedom by creating the equations for static equilibrium along x, y and z directions of each block and the equation for displacement compatibility of two adjacent blocks, thus good convergence can be obtained by combining with the global optimization methods. The method proposed is applied to a 3D wedge problem and the abutment stability of Xiaowan arch dam, so the validity and practicability are verified. The method is actually an extension of 2D Sarma method in 3D multi-block field, and is theoretically supported by the upper bound theorem of plasticity. Meanwhile, it gives the closed solution method for multi-block series sliding problems, and can provide an example for the rationality verification of various 3D slope stability programs.
  • [1]
    李瓒, 陈兴华, 郑建波, 等. 混凝土拱坝设计[M]. 中国电力出版社, 2000.

    LI Zan, CHEN Xin-hua, ZHENG Jian-bo, et al. Concrete Arch Dam Design[M]. Beijing: China Electric Power Press, 2000. (in Chinese)
    [2]
    Federal Energy Regulatory Commission. Engineering Guidelines for the Evaluation of Hydropower Projects, Chapter 11: Arch Dams[S]. Division of Dam Safety and Inspections Washington, DC 20426. 1999.
    [3]
    朱伯芳, 高季章, 陈祖煜, 等. 拱坝设计与研究[M]. 中国水利水电出版社, 2002.

    ZHU Bo-fang, GAO Ji-zhang, CHEN Zu-yu, et al. Design and research for concrete arch dams[M]. China WaterPower Press, 2002. (in Chinese)
    [4]
    潘家铮. 建筑物的抗滑稳定和滑坡分析[M]. 北京: 水利出版社, 1980.

    PAN Jia-zheng. Stability Analysis of Building Structures and Landslides[M]. Beijing: China Water Conservancy Press, 1980. (in Chinese)
    [5]
    WANG R K. Key technologies in the design and construction of 300 m ultra-high arch dams[J]. Engineering, 2016, 2(3): 350–359. doi: 10.1016/J.ENG.2016.03.012
    [6]
    KOTTENSTETTE J T. Block theory techniques used in arch dam foundation stability analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3/4): 573–578.
    [7]
    GOODMAN R E, POWELL C. Investigations of blocks in foundations and abutments of concrete dams[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(2): 105–116. doi: 10.1061/(ASCE)1090-0241(2003)129:2(105)
    [8]
    MIRZABOZORG H, VARMAZYARI M, HOSEINI M, et al. A comparative study of rock wedge stability of an arch dam abutment subjected to static and seismic loading[J]. Soil Mechanics and Foundation Engineering, 2015, 52(5): 292–300. doi: 10.1007/s11204-015-9344-6
    [9]
    宋战平, 李宁, 陈飞熊. 高拱坝坝肩裂隙岩体的三维非线性抗震稳定性分析[J]. 岩土工程学报, 2004, 26(3): 361–366. doi: 10.3321/j.issn:1000-4548.2004.03.013

    SONG Zhan-ping, LI Ning, CHEN Fei-xiong. Three dimensional nonlinear seismic stability analysis of abutment jointed rock mass of high arch dam[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 361–366. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.03.013
    [10]
    YU X, ZHOU Y F, PENG S Z. Stability analyses of dam abutments by 3D elasto-plastic finite-element method: a case study of Houhe gravity-arch dam in China[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(3): 415–430. doi: 10.1016/j.ijrmms.2005.01.001
    [11]
    刘喜康, 张建海, 赵文光. 基于动力有限元分析的任意滑块稳定分析方法[J]. 岩土工程学报, 2013, 35(增刊2): 363–368. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2063.htm

    LIU Xi-kang, ZHANG Jian-hai, ZHAO Wen-guang. Stability analysis method for arbitrary slip block based on dynamic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 363–368. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2063.htm
    [12]
    郭明伟, 葛修润, 李春光, 等. 边坡和坝基抗滑稳定分析的三维矢量和法及其工程应用[J]. 岩石力学与工程学报, 2010, 29(1): 8–20. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201001001.htm

    GUO Ming-wei, GE Xiu-run, LI Chun-guang, et al. Three-dimensional vector sum method employed in slope and dam foundation stability analyses and its applications to practical engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(1): 8–20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201001001.htm
    [13]
    徐卫亚, 狄圣杰, 郑文棠, 等. 白鹤滩水电站上坝线左拱座楔形体安全性能分析[J]. 岩石力学与工程学报, 2011, 30(5): 910–916. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105007.htm

    XU Wei-ya, DI Sheng-jie, ZHENG Wen-tang, et al. Safety performance analysis of rock wedges under left skewback of upstream dam line in Baihetan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 910–916. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105007.htm
    [14]
    肖珍珍, 王登银, 陈建叶, 等. 碾压混凝土高拱坝坝肩稳定及坝体开裂静动力分析[J]. 岩土力学, 2015, 36(12): 3541–3547, 3575. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512026.htm

    XIAO Zhen-zhen, WANG Deng-yin, CHEN Jian-ye, et al. Static and dynamic analyses of abutment stability and dam cracking of a roller-compacted concrete high-arch dam[J]. Rock and Soil Mechanics, 2015, 36(12): 3541–3547, 3575. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512026.htm
    [15]
    张泷, 刘耀儒, 杨强, 等. 杨房沟拱坝整体稳定性的三维非线性有限元分析与地质力学模型试验研究[J]. 岩土工程学报, 2013, 35(增刊1): 239–246. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1040.htm

    ZHANG Long, LIU Yao-ru, YANG Qiang, et al. Global stability of Yangfanggou Arch Dam by 3D nonlinear FEM analysis and geomechanical model tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 239–246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1040.htm
    [16]
    杨宝全, 张林, 陈媛, 等. 锦屏一级高拱坝坝基结构面弱化效应研究及坝肩稳定性分析[J]. 水利学报, 2016, 47(7): 907–915. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201607010.htm

    YANG Bao-quan, ZHANG Lin, CHEN Yuan, et al. Study on weakening effect of structural plane and stability analysis of Jinping I high arch dam[J]. Journal of Hydraulic Engineering, 2016, 47(7): 907–915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201607010.htm
    [17]
    混凝土拱坝设计规范: DL/T 5346—2006[S]. 2006.

    Design Specification for Concrete Arch Dams: DL/T 5346—2006[S]. 2006. (in Chinese)
    [18]
    混凝土拱坝设计规范: SL 282—2018[S]. 2018.

    Design Specification for Concrete Arch Dams: SL 282—2018[S]. 2018. (in Chinese)
    [19]
    任青文. 拱坝坝肩稳定分析中非线性方程组的线性化解法[J]. 河海大学学报, 1991, 19(3): 120–124. doi: 10.3321/j.issn:1000-1980.1991.03.018

    REN Qing-wen. Linearized solution to the nonlinear equations in stability analysis for arch dam abutment[J]. Journal of Hohai University, 1991, 19(3): 120–124. (in Chinese) doi: 10.3321/j.issn:1000-1980.1991.03.018
    [20]
    陈祖煜, 汪小刚, 杨健, 等. 岩质边坡稳定分析-原理·方法·程序[M]. 北京: 中国水利水电出版社, 2005.

    CHEN Zu-yu, WANG Xiao-gang, YANG Jian, et al. Rock Slope Stability Analysis-Theory, Method and Programs[M]. Beijing: China WaterPower Press, 2005. (in Chinese)
    [21]
    陈祖煜, 弥宏亮, 汪小刚. 边坡稳定三维分析的极限平衡方法[J]. 岩土工程学报, 2001, 23(5): 525–529. doi: 10.3321/j.issn:1000-4548.2001.05.001

    CHEN Zu-yu, MI Hong-liang, WANG Xiao-gang. A three- dimensional limit equilibrium method for slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 525–529. (in Chinese) doi: 10.3321/j.issn:1000-4548.2001.05.001
    [22]
    李同录, 王艳霞, 邓宏科. 一种改进的三维边坡稳定性分析方法[J]. 岩土工程学报, 2003, 25(5): 611–614. doi: 10.3321/j.issn:1000-4548.2003.05.020

    LI Tong-lu, WANG Yan-xia, DENG Hong-ke. An improved method for three-dimensional slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 611–614. (in Chinese) doi: 10.3321/j.issn:1000-4548.2003.05.020
    [23]
    卢坤林, 朱大勇, 甘文宁, 等. 一种边坡稳定性分析的三维极限平衡法及应用[J]. 岩土工程学报, 2013, 35(12): 2276–2282. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312023.htm

    LU Kun-lin, ZHU Da-yong, GAN Wen-ning, et al. 3D limit equilibrium method for slope stability analysis and its application[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2276–2282. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312023.htm
    [24]
    HOEK E, BRAY J D. Rock Slope Engineering[M]. Boca Raton: CRC Press, 1981.
    [25]
    中国水电西北勘测设计研究院. 特高拱坝枢纽分析与重点问题研究[M]. 北京: 中国电力出版社, 2004.

    Northwest Investigation Design and Research Institute. Analysis and studies on project and major technical issues of Super-High Arch dams[M]. Beijing: China Electric Power Press, 2004. (in Chinese)
  • Related Articles

    [1]HAN Zhong, ZHANG Lin, DING Luqiang, ZOU Weilie, FENG Huaiping, YING Zhenqian. Soil-water characteristics and dynamic responses of compacted clay under different moisture and temperature paths[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2591-2601. DOI: 10.11779/CJGE20230902
    [2]Soil-water characteristic curve model considering grain size gradation and deformation of soil[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240339
    [3]LIU Yan, YU Jian-tao. Hysteresis model for soil-water characteristic curve under dynamic conditions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 62-68. DOI: 10.11779/CJGE202101007
    [4]CAI Guo-qing, HAN Bo-wen, YANG Yu, LIU Yi, ZHAO Cheng-gang. Experimental study on soil-water characteristic curves of sandy loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 11-15. DOI: 10.11779/CJGE2020S1003
    [5]HAN Bo-wen, CAI Guo-qing, LI Jian, ZHAO Cheng-gang. Hydro-mechanical coupling bounding surface model for unsaturated soils considering bonding effect of particles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2059-2068. DOI: 10.11779/CJGE202011011
    [6]CAI Guo-qing, LIU Yi, XU Run-ze, LI Jian, ZHAO Cheng-gang. Experimental investigation for soil-water characteristic curve of red clay in full suction range[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 13-16. DOI: 10.11779/CJGE2019S2004
    [7]WANG Xiao-qi, WANG Shi-ji, CHENG Ming-shu, LI Xian, ZHOU Chao-yun, HE Bing-hui. Experimental study on soil-water characteristic curve of expensive soil considering net normal stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 235-240. DOI: 10.11779/CJGE2018S1038
    [8]TAO Gao-liang, KONG Ling-wei. Prediction of air-entry value and soil-water characteristic curve of soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 34-38. DOI: 10.11779/CJGE2018S1006
    [9]TANG Dong, QI Xiao-hui, JIANG Shui-hua, LI Dian-qing. Effect of different antecedent rainfalls and SWCCs on slope stability[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 148-155. DOI: 10.11779/CJGE2015S1029
    [10]LIU Yan, ZHAO Chenggang. Hysteresis model for soil-water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 399-405.
  • Cited by

    Periodical cited type(8)

    1. 介玉新. Rowe剪胀方程及一种新的推导方法. 水力发电学报. 2024(01): 109-123 .
    2. 蔡新合,陈子玉,李国英. 考虑颗粒破碎能耗的堆石料剪胀方程及其应用. 水利水运工程学报. 2024(03): 127-135 .
    3. 王步雪岩,孟庆山,钱建固. 基于体积变化的珊瑚砂砾破碎率研究. 岩土力学. 2024(07): 1967-1975 .
    4. 蔡新合,朱雨萌,李国英. 基于广义塑性理论框架的堆石料变形计算. 水利水运工程学报. 2024(04): 127-139 .
    5. 程诗芸,彭杨旭,张紫怡,郝晨曦,丰家俊,郭鸿. 土颗粒破碎机理的研究进展. 安徽建筑. 2023(01): 141-143 .
    6. 王柳江,刘啸宇,刘斯宏,扎西顿珠,沈超敏. 改进hhu-SH模型及其在面板堆石坝工程中的应用. 河海大学学报(自然科学版). 2023(02): 64-72 .
    7. 陈榕,武智勇,郝冬雪,高宇聪. 高应力下石英砂三轴剪切颗粒破碎演化规律及影响. 岩土工程学报. 2023(08): 1713-1722 . 本站查看
    8. 迟世春,郭宇,马锡钰,贾宇峰. 颗粒流变破碎与堆石料流变应变计算. 水力发电. 2023(10): 77-84+91 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return