• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Ti-qiang, WANG Yong-zhi, CHEN Su, DUAN Xue-feng, YUAN Xiao-ming. Influences of integral displacement methods on inverse analysis of accelerograph arrays for cyclic shear stress-strain response[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 115-124. DOI: 10.11779/CJGE202201011
Citation: WANG Ti-qiang, WANG Yong-zhi, CHEN Su, DUAN Xue-feng, YUAN Xiao-ming. Influences of integral displacement methods on inverse analysis of accelerograph arrays for cyclic shear stress-strain response[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 115-124. DOI: 10.11779/CJGE202201011

Influences of integral displacement methods on inverse analysis of accelerograph arrays for cyclic shear stress-strain response

More Information
  • Received Date: November 18, 2020
  • Available Online: September 22, 2022
  • The inverse analysis of accelerograph arrays for cyclic shear stress-strain response is widely used in in-situ monitoring and physical model tests, but the influences of the key factors such as integral methods and distribution functions still lack knowledge. Four representative one-dimensional shear beam distribution functions are selected, and a set of dynamic centrifugal model tests are used to clarify the influences of the integral methods and distribution functions on the inverse analysis of shear stresses and shear strains, and the features of the acquired hysteresis loops and modulus damping ratios are further analyzed. The results show: (1) The integral methods exhibit a visible impact on the inversion of the shear stresses and shear strains, and using the acceleration curves processed by the integral methods to obtain the shear stresses is an important condition for effectively ensuring the smoothness and closure of the hysteresis loops. Compared with the ARI method, the USGS method has a non-negligible influence on the phase and amplitude of the original acceleration curves. (2) The shear stresses and shear strains obtained by the three shear beam distribution functions of linear, cubic spline and weighted residuals are very consistent, and the influences of the distribution functions can be ignored. However, the results obtained by the cosine method distribution function are relatively discrete, which is not suitable for selection. (3) The dependence of the shear modulus on the integral methods is slight, but the damping ratios are evidently affected. The development trend of the damping ratios obtained by the ARI method conforms to the general understanding, while the USGS method is contrary to it. The research methods and conclusions may provide important guidance and method support for effectively and reliably obtaining the cyclic shear stress-strain response of in-situ site and geophysical tests and verifying the constitutive relationship models.
  • [1]
    黄文熙. 土的弹塑性应力–应变模型理论[J]. 岩土力学, 1979, 1(1): 1–20. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX197901001.htm

    HUANG Wen-xi. Theory of elastoplastic stress-strain model for soil[J]. Rock and Soil Mechanics, 1979, 1(1): 1–20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX197901001.htm
    [2]
    卢肇钧. 土的变形破坏机理和土力学计算理论问题[J]. 岩土工程学报, 1989, 11(6): 65–74. doi: 10.3321/j.issn:1000-4548.1989.06.006

    LU Zhao-jun. The failure mechanism of soils and its theoretical computations[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(6): 65–74. (in Chinese) doi: 10.3321/j.issn:1000-4548.1989.06.006
    [3]
    沈珠江. 土体结构性的数学模型──21世纪土力学的核心问题[J]. 岩土工程学报, 1996, 18(1): 95–97. doi: 10.3321/j.issn:1000-4548.1996.01.015

    SHEN Zhu-jiang. Mathematical model of soil structure─the core issue of soil mechanics in the 21st century[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 95–97. (in Chinese) doi: 10.3321/j.issn:1000-4548.1996.01.015
    [4]
    ZEGHAL M, ELGAMAL A W, TANG H T, et al. Lotung downhole array. II: evaluation of soil nonlinear properties[J]. Journal of Geotechnical Engineering, 1995, 121(4): 363–378. doi: 10.1061/(ASCE)0733-9410(1995)121:4(363)
    [5]
    ELGAMAL A W, ZEGHAL M, PARRA E. Liquefaction of reclaimed island in Kobe, Japan[J]. Journal of Geotechnical Engineering, 1996, 122(1): 39–49. doi: 10.1061/(ASCE)0733-9410(1996)122:1(39)
    [6]
    DAVIS R O, BERRILL J B. Rational approximation of stress and strain based on downhole acceleration measurements[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(8): 603–619. doi: 10.1002/(SICI)1096-9853(199808)22:8<603::AID-NAG936>3.0.CO;2-7
    [7]
    陈国兴, 王炳辉, 孙田. 饱和南京细砂动剪切模量特性的大型振动台试验研究[J]. 岩土工程学报, 2012, 34(4): 582–590. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204004.htm

    CHEN Guo-xing, WANG Bing-hui, SUN Tian. Dynamic shear modulus of saturated Nanjing fine sand in large scale shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 582–590. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204004.htm
    [8]
    杨耀辉, 陈育民, 刘汉龙, 等. 排水刚性桩单桩抗液化性能的振动台试验研究[J]. 岩土工程学报, 2018, 40(2): 287–295. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802010.htm

    YANG Yao-hui, CHEN Yu-min, LIU Han-long, et al. Shaking table tests on liquefaction resistance performance of single rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 287–295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802010.htm
    [9]
    BRANDENBERG S J, WILSON D W, RASHID M M. Weighted residual numerical differentiation algorithm applied to experimental bending moment data[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(6): 854–863. doi: 10.1061/(ASCE)GT.1943-5606.0000277
    [10]
    KAMAI R, BOULANGER R. Characterizing localization processes during liquefaction using inverse analyses of instrumentation arrays[M]//Meso-Scale Shear Physics in Earthquake and Landslide Mechanics. Boca Raton: CRC Press, 2009: 219–238.
    [11]
    王永志, WILSON D W, KHOSRAVI M, 等. 动力离心模型试验循环剪应力–剪应变反演方法对比[J]. 岩土工程学报, 2016, 38(2): 271–277. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602013.htm

    WANG Yong-zhi, WILSON D W, KHOSRAVI M, et al. Evaluation of cyclic shear stress-strain using inverse analysis techniques in dynamic centrifuge tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 271–277. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602013.htm
    [12]
    王体强, 王永志, 袁晓铭, 等. 基于振动台试验的加速度积分位移方法可靠性研究[J]. 岩土力学, 2019, 40(增刊1): 565–573. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1082.htm

    WANG Ti-qiang, WANG Yong-zhi, YUAN Xiao-ming, et al. Reliability analysis of acceleration integral displacement method based on shaking table tests[J]. Rock and Soil Mechanics, 2019, 40(S1): 565–573. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1082.htm
    [13]
    王体强, 王永志, 袁晓铭, 等. 自适应鲁棒加速度积分新方法与可靠度分析[J]. 岩石力学与工程学报, 2021, 40(增刊1): 2724–2737. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1015.htm

    WANG Ti-qiang, WANG Yong-zhi, YUAN Xiao-ming, et al. A new type of adaptive robust acceleration integration approach and reliability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S1): 2724–2737 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1015.htm
    [14]
    CONVERSE A M, BRADY A G. BAP: Basic strong-motion accelerogram processing software; version 1.0[R]. U. S. Geology Survey, 1992, 92–296A.
    [15]
    王永志, MOHAMMAD K, DANIEL W, 等. CDM格栅复合黏土地基地震反应离心试验研究[J]. 岩石力学与工程学报, 2018, 37(10): 2394–2405. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810019.htm

    WANG Yong-zhi, MOHAMMAD K, DANIEL W, et al. Centrifuge modeling of seismic response of soft clay grounds improved by CDM grids[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2394–2405. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810019.htm
    [16]
    KHOSRAVI M, TAMURA S, WILSON D W, et al. Reduction of seismic shaking intensity on soft soil sites using stiff ground reinforcement—Report 2 & 3: Big centrifuge test data MKH01-MKH02[R]. 2014.
    [17]
    HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667–692.
    [18]
    BRENNAN A J, THUSYANTHAN N I, MADABHUSHI S P. Evaluation of shear modulus and damping in dynamic centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12): 1488–1497.
    [19]
    AFACAN K B, BRANDENBERG S J, STEWART J P. Centrifuge modeling studies of site response in soft clay over wide strain range[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(2): 04013003.
  • Cited by

    Periodical cited type(9)

    1. 孙大伟,许鑫洋,郦能惠,章涵,李登华,许兵,黄城友. 高面板坝挤压墙-垫层料接触面的大型单剪试验及力学特性研究. 岩土工程学报. 2025(02): 388-396 . 本站查看
    2. 邹昌喜,张明峻,王伟,徐炎兵,夏建国. 基于数值模拟法的某海上风电钢管桩承载力特性研究. 土工基础. 2025(01): 108-112 .
    3. 朱俊高,陈鸽,王涛,夏勇,彭文明,罗启迅. 一种适用于细粒土的新型叠片式单剪仪研制与应用. 岩土工程学报. 2024(12): 2668-2674 . 本站查看
    4. 李浩民,饶锡保,江洎洧,徐晗,卢一为,刘蔚. 单剪与常规三轴条件下土石混合体强度特性差异. 长江科学院院报. 2023(03): 105-111 .
    5. 徐晗,熊泽斌,潘家军,郑光俊. 拉洛水利枢纽沥青混凝土心墙与廊道连接型式研究. 人民长江. 2023(03): 161-165 .
    6. 左永振,陈良,徐晗,李波,陈劲松. 大藤峡二期围堰结构和渗控安全性研究. 人民珠江. 2023(07): 27-35 .
    7. 何芳婵,李威,褚青来,吕正勋,李世伟. 坝坡垫层料降雨冲蚀破坏机理研究. 河北工程大学学报(自然科学版). 2022(01): 72-77 .
    8. 王艳丽,刘晶,王永明,潘家军,陈云. 复合土工膜与防渗墙连接的大型剪切试验研究. 长江科学院院报. 2021(04): 75-80 .
    9. 王煜,付建新,杨子龙. 岩石-充填体耦合接触面细观参数及其力学特性研究. 矿业研究与开发. 2020(03): 113-118 .

    Other cited types(9)

Catalog

    Article views PDF downloads Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return