• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Zhouquan, CHEN Xiangsheng, PANG Xiaochao, SU Dong, LIN Xingtao. Semi-implicit integration algorithm for non-coaxial model based on vertex theory and its application[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 521-529. DOI: 10.11779/CJGE20220050
Citation: CHEN Zhouquan, CHEN Xiangsheng, PANG Xiaochao, SU Dong, LIN Xingtao. Semi-implicit integration algorithm for non-coaxial model based on vertex theory and its application[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 521-529. DOI: 10.11779/CJGE20220050

Semi-implicit integration algorithm for non-coaxial model based on vertex theory and its application

More Information
  • Received Date: January 11, 2022
  • Available Online: March 15, 2023
  • A semi-implicit integration algorithm is presented for the non-coaxial model based on the yield vertex theory. In the stress updating considering the non-coaxial terms, the plastic flow direction is expressed explicitly. The Gram-Schmidt orthogonalization process aiming to formulate the non-coaxial flow is conducted under the given stress condition. According to the orthogonality among tensors, the stress updating equation is further simplified, and the Newton-Raphson iteration is established based on the simplified equation. With this algorithm programmed into the user subroutines, Vumat, the constitutive model is implemented into the finite element analysis based on ABAQUS. Through the explicit procedure, the simple shear tests and trapdoor problems are simulated with different non-coaxial model parameters. The results are compared to those of the coaxial model. The calculated results show that the proposed algorithm is converged and robust, and is be suitable for the numerical analysis.
  • [1]
    ROSCOE K H. The influence of strains in soil mechanics[J]. Géotechnique, 1970, 20(2): 129-170. doi: 10.1680/geot.1970.20.2.129
    [2]
    ODA M, et al. Microscopic deformation mechanism of granular material in simple shear[J]. Soils and Foundations, 1974, 14(4): 25-38. doi: 10.3208/sandf1972.14.4_25
    [3]
    MIURA K, MIURA S, TOKI S. Deformation behavior of anisotropic dense sand under principal stress axes rotation[J]. Soils and Foundations, 1986, 26(1): 36-52. doi: 10.3208/sandf1972.26.36
    [4]
    PRADEL D, ISHIHARA K, GUTIERREZ M. Yielding and flow of sand under principal stress axes rotation[J]. Soils and Foundations, 1990, 30(1): 87-99. doi: 10.3208/sandf1972.30.87
    [5]
    NAKATA Y, HYODO M, MURATA H, et al. Flow deformation of sands subjected to principal stress rotation[J]. Soils and Foundations, 1998, 38(2): 115-128. doi: 10.3208/sandf.38.2_115
    [6]
    RUDNICKI J W. Conditions for the localization of deformation in pressure-sensitive dilatant materials[J]. Journal of the Mechanics and Physics of Solids, 1975, 23(6): 371-394. doi: 10.1016/0022-5096(75)90001-0
    [7]
    YU H S, YUAN X. On a class of non-coaxial plasticity models for granular soils[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 725-748. doi: 10.1098/rspa.2005.1590
    [8]
    LASHKARI A, LATIFI M. A non-coaxial constitutive model for sand deformation under rotation of principal stress axes[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(9): 1051-1086. doi: 10.1002/nag.659
    [9]
    钱建固, 黄茂松. 复杂应力状态下岩土体的非共轴塑性流动理论[J]. 岩石力学与工程学报, 2006, 25(6): 1259-1264. doi: 10.3321/j.issn:1000-6915.2006.06.026

    QIAN Jiangu, HUANG Maosong. Non-coaxial plastic flow theory in multi-dimensional stress state[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1259-1264. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.06.026
    [10]
    LI X S, DAFALIAS Y F. A constitutive framework for anisotropic sand including non-proportional loading[J]. Géotechnique, 2004, 54(1): 41-55. doi: 10.1680/geot.2004.54.1.41
    [11]
    TSUTSUMI S, HASHIGUCHI K. General non-proportional loading behavior of soils[J]. International Journal of Plasticity, 2005, 21(10): 1941-1969. doi: 10.1016/j.ijplas.2005.01.001
    [12]
    陈洲泉, 黄茂松. 砂土各向异性与非共轴特性的本构模拟[J]. 岩土工程学报, 2018, 40(2): 243-251. doi: 10.11779/CJGE201802004

    CHEN Zhouquan, HUANG Maosong. Constitutive modeling of anisotropic and non-coaxial behaviors of sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 243-251. (in Chinese) doi: 10.11779/CJGE201802004
    [13]
    陈洲泉, 黄茂松. 基于状态相关本构模型的砂土非共轴特性模拟[J]. 岩土力学, 2017, 38(7): 1959-1966. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707015.htm

    CHEN Zhouquan, HUANG Maosong. Simulation of non-coaxial characteristics of sandy soil based on state-dependent constitutive model[J]. Rock and Soil Mechanics, 2017, 38(7): 1959-1966. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707015.htm
    [14]
    CHEN Z Q, HUANG M S. Non-coaxial behavior modeling of sands subjected to principal stress rotation[J]. Acta Geotechnica, 2020, 15(3): 655-669. doi: 10.1007/s11440-018-0760-4
    [15]
    YANG Y M, YU H S. Numerical simulations of simple shear with non-coaxial soil models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(1): 1-19. doi: 10.1002/nag.468
    [16]
    YANG Y M, YU H S, KONG L W. Implicit and explicit procedures for the yield vertex non-coaxial theory[J]. Computers and Geotechnics, 2011, 38(5): 751-755. doi: 10.1016/j.compgeo.2011.03.008
    [17]
    YANG Y M, OOI J, ROTTER M, et al. Numerical analysis of silo behavior using non-coaxial models[J]. Chemical Engineering Science, 2011, 66(8): 1715-1727. doi: 10.1016/j.ces.2011.01.012
    [18]
    CHANG J, CHU X, XU Y. The role of non-coaxiality in the simulation of strain localization based on classical and Cosserat continua[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(3): 382-399. doi: 10.1002/nag.2562
    [19]
    袁冉, 杨文波, 余海岁, 等. 土体非共轴各向异性对城市浅埋土质隧道诱发地表沉降的影响[J]. 岩土工程学报, 2018, 40(4): 673-680. doi: 10.11779/CJGE201804011

    YUAN Ran, YANG Wenbo, YU Haisui, et al. Effects of non-coaxiality and soil anisotropy on tunneling-induced subsurface settlements[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 673-680. (in Chinese) doi: 10.11779/CJGE201804011
    [20]
    YUAN R, YU H S, HU N, et al. Non-coaxial soil model with an anisotropic yield criterion and its application to the analysis of strip footing problems[J]. Computers and Geotechnics, 2018, 99: 80-92. doi: 10.1016/j.compgeo.2018.02.022
    [21]
    SIMO J C, HUGHES T J R. Computational Inelasticity[M]. New York: Springer, 1998.
    [22]
    BELYTSCHKO T, LIU W K, MORAN B, ELKHODARY K. Nonlinear Finite Elements for Continua and Structures[M]. 2nd ed. New York: John Wiley & Sons Ltd, 2014.
    [23]
    SIMO J C. A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations[J]. Computer Methods in Applied Mechanics and Engineering, 1985, 49(2): 221-245. doi: 10.1016/0045-7825(85)90061-1
    [24]
    MORAN B, ORTIZ M, SHIH C F. Formulation of implicit finite element methods for multiplicative finite deformation plasticity[J]. International Journal for Numerical Methods in Engineering, 1990, 29(3): 483-514. doi: 10.1002/nme.1620290304
    [25]
    LIN X T, CHEN R P, WU H N, et al. A composite function model for predicting the ground reaction curve on a trapdoor[J]. Computers and Geotechnics, 2022, 141: 104496. doi: 10.1016/j.compgeo.2021.104496
  • Related Articles

    [1]WU Shuai-feng, YAN Jun, CAI Hong, WEI Ying-qi, DU Ji-fang, LIU Chuan-peng. Experimental study on characteristics of impact force of tailing flow under dam break of tailing reservoir[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 219-225. DOI: 10.11779/CJGE2020S2039
    [2]RAN Yong-hong, WANG Xiu-li, WANG Peng, ZHANG Zhi-jiang. Experimental study on dynamic performance of concrete filled steel tubular piles under impact loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 81-86. DOI: 10.11779/CJGE2018S1013
    [3]LIU Jie, FENG Shi-guo, LI Tian-bin, WANG Rui-hong, LEI Lan, WANG Fei. Prediction of dynamic response of rock under impact loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2022-2030. DOI: 10.11779/CJGE201811008
    [4]GAO Meng, ZHANG Ji-yan, GAO Guang-yun, CHEN Qing-shen, CHAO Ming-song, LI Da-yong. Solution to transient response of a cylindrical lined tunnel in an infinite elastic medium under internal blast load[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1366-1373. DOI: 10.11779/CJGE201708002
    [5]QIU Chang-lin, WANG Jing, YAN Shu-wang. Coupled DEM-FEM analysis of submarine pipelines with rock armor berm under impact load[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2088-2093. DOI: 10.11779/CJGE201511021
    [6]DING Xuan-ming, LIU Han-long. Time-domain analytical solution of the vibration response of a large-diameter pipe pile subjected to transient concentrated load[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1010-1017.
    [7]LING Dao-sheng, ZHANG Fei-xia, WANG Yun-gang, SHAN Zhen-dong, FANG Zhi-hui. Exact solution for one-dimensional transient response of single-layer fluid-saturated porous media under arbitrary vertical loadings[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 966.
    [8]GAO Meng, GAO Guang-yun, LI Da-yong. Transient response of lining structure subjected to sudden internal uniform loading considering effects of coupling mass[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 862.
    [9]CAI Yuan-qiang, CHEN Cheng-zhen, SUN Hong-lei. Transient dynamic response of tunnels subjected to blast loads in saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 361.
    [10]LIU Hanlong, DING Xuanming. Analytical solution of dynamic response of cast-in-situ concrete thin-wall pipe piles under transient concentrated load with low strain[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1611-1617.
  • Other Related Supplements

  • Cited by

    Periodical cited type(19)

    1. 洪嘉伟,张彬,潘道明. 隧道注浆圈渗透系数对邻侧隧道的影响. 交通科技与管理. 2025(01): 147-151 .
    2. 袁立刚,冷伍明,姜涌,朱铁环,安永林,岳健. 降雨对江底凹形纵坡隧道排水池区段的影响及排水报警方法. 铁道科学与工程学报. 2025(03): 1369-1382 .
    3. 陈云娟,王乐宁,周宗青,贾润枝,杨卓,罗平利,刘梦悦. 基于海底隧道衬砌孔隙水压力的涌水量预测方法及工程应用. 应用基础与工程科学学报. 2024(01): 288-300 .
    4. 韩智铭,闫科宇,王雪,朱正国,崔会敏. 有限地层三孔并行海底隧道渗流场解析研究. 铁道工程学报. 2024(01): 45-52 .
    5. 汤钰,王华宁,宋飞. 渗透各向异性地层中隧洞稳态渗流场的半解析预测模型. 力学季刊. 2024(02): 473-482 .
    6. 韩智铭,闫科宇,崔会敏,刘庆宽. 基于等效面积法的三孔并行海底隧道渗流场解析研究. 工程力学. 2024(S1): 112-116+149 .
    7. 高启程,姜启武,陈志杰,赖鹏安. 考虑损伤效应的隧道二维渗流场解析及涌水量预测. 人民长江. 2024(10): 197-204+211 .
    8. 李航达,杨广鹏,韩智铭. 多洞并行海底隧道最佳覆岩厚度变化规律研究. 石家庄铁道大学学报(自然科学版). 2024(03): 40-46 .
    9. 卢玉东,国金琦,程大伟,毛兴隆. 考虑固液二相互态特性的流固耦合模型. 中国公路学报. 2023(01): 58-69 .
    10. 张兵海,崔炜,张石磊,杜三林,邓检强,刘毅,朱银邦. 临近水库的隧洞二维渗流场解析解及工程应用研究. 水利水电技术(中英文). 2023(03): 126-134 .
    11. 马少坤,陈彩洁,段智博,刘莹. 基于镜像法的有限含水层内隧道渗流场解析解及其验证. 工程力学. 2023(05): 172-181 .
    12. 胡红星. 富水破碎带地层TBM隧道围岩稳定性研究. 科技与创新. 2023(17): 39-44 .
    13. 乔彤,周建,张天骄,蒋熠诚. 考虑渗透各向异性的水下非圆形隧道渗流场解析. 工程科学与技术. 2023(05): 109-117 .
    14. 徐锋. 隧道穿越富水断层多场耦合特征分析及施工控制技术. 铁道建筑技术. 2022(05): 148-152 .
    15. 金波,胡明,方棋洪. 考虑渗流效应的深埋海底隧道围岩与衬砌结构应力场研究. 力学学报. 2022(05): 1322-1330 .
    16. 郑培超,闫科宇,王雪,韩智铭. 海底隧道三孔并行渗流场泄压规律研究. 现代隧道技术. 2022(S1): 353-362 .
    17. 王昊,刘广,王静峰,张兴其,浦玉炳,严中,丁兆东. 少荃湖湖底隧道工程渗流场特性分析. 人民珠江. 2021(10): 63-67 .
    18. 李沣展,岳健,安永林,孙超杰,谭仁华. 河底浅埋小净距隧道施工期渗流性状分析. 湖南科技大学学报(自然科学版). 2021(04): 47-54 .
    19. 叶亮,丁文其,张清照. 地下水对岩石隧道衬砌作用计算方法的探讨. 现代隧道技术. 2021(S1): 326-335 .

    Other cited types(13)

Catalog

    Article views (265) PDF downloads (61) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return