Citation: | CHEN Zhouquan, CHEN Xiangsheng, PANG Xiaochao, SU Dong, LIN Xingtao. Semi-implicit integration algorithm for non-coaxial model based on vertex theory and its application[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 521-529. DOI: 10.11779/CJGE20220050 |
[1] |
ROSCOE K H. The influence of strains in soil mechanics[J]. Géotechnique, 1970, 20(2): 129-170. doi: 10.1680/geot.1970.20.2.129
|
[2] |
ODA M, et al. Microscopic deformation mechanism of granular material in simple shear[J]. Soils and Foundations, 1974, 14(4): 25-38. doi: 10.3208/sandf1972.14.4_25
|
[3] |
MIURA K, MIURA S, TOKI S. Deformation behavior of anisotropic dense sand under principal stress axes rotation[J]. Soils and Foundations, 1986, 26(1): 36-52. doi: 10.3208/sandf1972.26.36
|
[4] |
PRADEL D, ISHIHARA K, GUTIERREZ M. Yielding and flow of sand under principal stress axes rotation[J]. Soils and Foundations, 1990, 30(1): 87-99. doi: 10.3208/sandf1972.30.87
|
[5] |
NAKATA Y, HYODO M, MURATA H, et al. Flow deformation of sands subjected to principal stress rotation[J]. Soils and Foundations, 1998, 38(2): 115-128. doi: 10.3208/sandf.38.2_115
|
[6] |
RUDNICKI J W. Conditions for the localization of deformation in pressure-sensitive dilatant materials[J]. Journal of the Mechanics and Physics of Solids, 1975, 23(6): 371-394. doi: 10.1016/0022-5096(75)90001-0
|
[7] |
YU H S, YUAN X. On a class of non-coaxial plasticity models for granular soils[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 725-748. doi: 10.1098/rspa.2005.1590
|
[8] |
LASHKARI A, LATIFI M. A non-coaxial constitutive model for sand deformation under rotation of principal stress axes[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(9): 1051-1086. doi: 10.1002/nag.659
|
[9] |
钱建固, 黄茂松. 复杂应力状态下岩土体的非共轴塑性流动理论[J]. 岩石力学与工程学报, 2006, 25(6): 1259-1264. doi: 10.3321/j.issn:1000-6915.2006.06.026
QIAN Jiangu, HUANG Maosong. Non-coaxial plastic flow theory in multi-dimensional stress state[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1259-1264. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.06.026
|
[10] |
LI X S, DAFALIAS Y F. A constitutive framework for anisotropic sand including non-proportional loading[J]. Géotechnique, 2004, 54(1): 41-55. doi: 10.1680/geot.2004.54.1.41
|
[11] |
TSUTSUMI S, HASHIGUCHI K. General non-proportional loading behavior of soils[J]. International Journal of Plasticity, 2005, 21(10): 1941-1969. doi: 10.1016/j.ijplas.2005.01.001
|
[12] |
陈洲泉, 黄茂松. 砂土各向异性与非共轴特性的本构模拟[J]. 岩土工程学报, 2018, 40(2): 243-251. doi: 10.11779/CJGE201802004
CHEN Zhouquan, HUANG Maosong. Constitutive modeling of anisotropic and non-coaxial behaviors of sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 243-251. (in Chinese) doi: 10.11779/CJGE201802004
|
[13] |
陈洲泉, 黄茂松. 基于状态相关本构模型的砂土非共轴特性模拟[J]. 岩土力学, 2017, 38(7): 1959-1966. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707015.htm
CHEN Zhouquan, HUANG Maosong. Simulation of non-coaxial characteristics of sandy soil based on state-dependent constitutive model[J]. Rock and Soil Mechanics, 2017, 38(7): 1959-1966. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707015.htm
|
[14] |
CHEN Z Q, HUANG M S. Non-coaxial behavior modeling of sands subjected to principal stress rotation[J]. Acta Geotechnica, 2020, 15(3): 655-669. doi: 10.1007/s11440-018-0760-4
|
[15] |
YANG Y M, YU H S. Numerical simulations of simple shear with non-coaxial soil models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(1): 1-19. doi: 10.1002/nag.468
|
[16] |
YANG Y M, YU H S, KONG L W. Implicit and explicit procedures for the yield vertex non-coaxial theory[J]. Computers and Geotechnics, 2011, 38(5): 751-755. doi: 10.1016/j.compgeo.2011.03.008
|
[17] |
YANG Y M, OOI J, ROTTER M, et al. Numerical analysis of silo behavior using non-coaxial models[J]. Chemical Engineering Science, 2011, 66(8): 1715-1727. doi: 10.1016/j.ces.2011.01.012
|
[18] |
CHANG J, CHU X, XU Y. The role of non-coaxiality in the simulation of strain localization based on classical and Cosserat continua[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(3): 382-399. doi: 10.1002/nag.2562
|
[19] |
袁冉, 杨文波, 余海岁, 等. 土体非共轴各向异性对城市浅埋土质隧道诱发地表沉降的影响[J]. 岩土工程学报, 2018, 40(4): 673-680. doi: 10.11779/CJGE201804011
YUAN Ran, YANG Wenbo, YU Haisui, et al. Effects of non-coaxiality and soil anisotropy on tunneling-induced subsurface settlements[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 673-680. (in Chinese) doi: 10.11779/CJGE201804011
|
[20] |
YUAN R, YU H S, HU N, et al. Non-coaxial soil model with an anisotropic yield criterion and its application to the analysis of strip footing problems[J]. Computers and Geotechnics, 2018, 99: 80-92. doi: 10.1016/j.compgeo.2018.02.022
|
[21] |
SIMO J C, HUGHES T J R. Computational Inelasticity[M]. New York: Springer, 1998.
|
[22] |
BELYTSCHKO T, LIU W K, MORAN B, ELKHODARY K. Nonlinear Finite Elements for Continua and Structures[M]. 2nd ed. New York: John Wiley & Sons Ltd, 2014.
|
[23] |
SIMO J C. A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations[J]. Computer Methods in Applied Mechanics and Engineering, 1985, 49(2): 221-245. doi: 10.1016/0045-7825(85)90061-1
|
[24] |
MORAN B, ORTIZ M, SHIH C F. Formulation of implicit finite element methods for multiplicative finite deformation plasticity[J]. International Journal for Numerical Methods in Engineering, 1990, 29(3): 483-514. doi: 10.1002/nme.1620290304
|
[25] |
LIN X T, CHEN R P, WU H N, et al. A composite function model for predicting the ground reaction curve on a trapdoor[J]. Computers and Geotechnics, 2022, 141: 104496. doi: 10.1016/j.compgeo.2021.104496
|
[1] | WU Shuai-feng, YAN Jun, CAI Hong, WEI Ying-qi, DU Ji-fang, LIU Chuan-peng. Experimental study on characteristics of impact force of tailing flow under dam break of tailing reservoir[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 219-225. DOI: 10.11779/CJGE2020S2039 |
[2] | RAN Yong-hong, WANG Xiu-li, WANG Peng, ZHANG Zhi-jiang. Experimental study on dynamic performance of concrete filled steel tubular piles under impact loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 81-86. DOI: 10.11779/CJGE2018S1013 |
[3] | LIU Jie, FENG Shi-guo, LI Tian-bin, WANG Rui-hong, LEI Lan, WANG Fei. Prediction of dynamic response of rock under impact loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2022-2030. DOI: 10.11779/CJGE201811008 |
[4] | GAO Meng, ZHANG Ji-yan, GAO Guang-yun, CHEN Qing-shen, CHAO Ming-song, LI Da-yong. Solution to transient response of a cylindrical lined tunnel in an infinite elastic medium under internal blast load[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1366-1373. DOI: 10.11779/CJGE201708002 |
[5] | QIU Chang-lin, WANG Jing, YAN Shu-wang. Coupled DEM-FEM analysis of submarine pipelines with rock armor berm under impact load[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2088-2093. DOI: 10.11779/CJGE201511021 |
[6] | DING Xuan-ming, LIU Han-long. Time-domain analytical solution of the vibration response of a large-diameter pipe pile subjected to transient concentrated load[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1010-1017. |
[7] | LING Dao-sheng, ZHANG Fei-xia, WANG Yun-gang, SHAN Zhen-dong, FANG Zhi-hui. Exact solution for one-dimensional transient response of single-layer fluid-saturated porous media under arbitrary vertical loadings[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 966. |
[8] | GAO Meng, GAO Guang-yun, LI Da-yong. Transient response of lining structure subjected to sudden internal uniform loading considering effects of coupling mass[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 862. |
[9] | CAI Yuan-qiang, CHEN Cheng-zhen, SUN Hong-lei. Transient dynamic response of tunnels subjected to blast loads in saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 361. |
[10] | LIU Hanlong, DING Xuanming. Analytical solution of dynamic response of cast-in-situ concrete thin-wall pipe piles under transient concentrated load with low strain[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1611-1617. |