Citation: | SONG Jian, LU Zhuxi, XIE Huawei, ZHANG Fei, JI Jian, GAO Yufeng. Analysis of coupled shallow and deep sliding of slopes induced by earthquake based on limit equilibrium method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1141-1150. DOI: 10.11779/CJGE20220035 |
[1] |
NEWMARK N M. Effects of earthquakes on dams and embankments[J]. Geotechnique, 1965, 15(2): 139-160. doi: 10.1680/geot.1965.15.2.139
|
[2] |
MAKDISI F I, SEED H B. Simplified procedure for estimating dam and embankment earthquake-induced deformations[J]. Journal of the Geotechnical Engineering Division, 1978, 104(7): 849-867. doi: 10.1061/AJGEB6.0000668
|
[3] |
RATHJE E M, BRAY J D. Nonlinear coupled seismic sliding analysis of earth structures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(11): 1002-1014. doi: 10.1061/(ASCE)1090-0241(2000)126:11(1002)
|
[4] |
秦雨樵, 汤华, 邓琴, 等. 强震作用下边坡屈服加速度计算方法的改进[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3439-3447. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2019.htm
QIN Yuqiao, TANG Hua, DENG Qin, et al. Improvement on the calculation method of slope critical acceleration under strong earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3439-3447. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2019.htm
|
[5] |
陈春舒, 夏元友. 基于极限分析的边坡实时动态Newmark滑块位移法[J]. 岩石力学与工程学报, 2016, 35(12): 2507-2515. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612015.htm
CHEN Chunshu, XIA Yuanyou. A real-time dynamic Newmark sliding block method for slopes based on limit analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2507-2515. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612015.htm
|
[6] |
BANDNI V, BIONDI G, CASCONE E, et al. A GLE-based model for seismic displacement analysis of slopes including strength degradation and geometry rearrangement[J]. Soil Dynamics and Earthquake Engineering, 2015, 71: 128-142. doi: 10.1016/j.soildyn.2015.01.010
|
[7] |
JI J, ZHANG W, ZHANG F, et al. Reliability analysis on permanent displacement of earth slopes using the simplified Bishop method[J]. Computers and Geotechnics, 2020, 117: 103286. doi: 10.1016/j.compgeo.2019.103286
|
[8] |
李明, 辛鸿博. 人工土山的地震永久变形分析[J]. 岩土工程学报, 2015, 37(11): 2128-2132. doi: 10.11779/CJGE201511027
LI Ming, XIN Hongbo. Seismic permanent deformation of earth-fill hill[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2128-2132. (in Chinese) doi: 10.11779/CJGE201511027
|
[9] |
黄帅, 宋波, 蔡德钩, 等. 近远场地震下高陡边坡的动力响应及永久位移分析[J]. 岩土工程学报, 2013, 35(增刊2): 768-773. http://www.cgejournal.com/cn/article/id/15488
HUANG Shuai, SONG Bo, CAI Degou, et al. Dynamic response and permanent displacement of high-steep slopes under near- and far-field earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 768-773. (in Chinese) http://www.cgejournal.com/cn/article/id/15488
|
[10] |
宋健, 高广运. 基于速度脉冲地震动的边坡地震位移统一预测模型[J]. 岩土工程学报, 2013, 35(11): 2009-2017. http://www.cgejournal.com/cn/article/id/15330
SONG Jian, GAO Guangyun. Empirical predictive model for seismic displacement of slopes under velocity pulse-like ground motions[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2009-2017. (in Chinese) http://www.cgejournal.com/cn/article/id/15330
|
[11] |
杨涛, 张忠平, 马惠民. 多层复杂滑坡的稳定性分析与支护选择[J]. 岩石力学与工程学报, 2007, 26(增刊2): 4189-4194. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2088.htm
YANG Tao, ZHANG Zhongping, MA Huimin. Stability analysis and supporting selection of multi-layer complex landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 4189-4194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2088.htm
|
[12] |
张俊文, 邹烨, 李玉琳. 大型多层次堆积体破坏模式及其稳定性[J]. 岩石力学与工程学报, 2016, 35(12): 2479-2489. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612012.htm
ZHANG Junwen, ZOU Ye, LI Yulin. Failure mechanism and stability analysis of big multi-layer deposit[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2479-2489. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612012.htm
|
[13] |
WARTMAN J, SEED R B, BRAY J D. Shaking table modeling of seismically induced deformations in slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(5): 610-622. doi: 10.1061/%28ASCE%291090-0241%282005%29131%3A5%28610%29
|
[14] |
艾挥, 吴红刚, 冯文强, 等. 多滑动面滑坡变形破坏机理的振动台试验研究[J]. 防灾减灾工程学报, 2018, 38(1): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201801010.htm
AI Hui, WU Honggang, FENG Wenqiang, et al. Shaking table test study on deformation and failure mechanism of landslide wtih multiple slip surface[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(1): 65-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201801010.htm
|
[15] |
LESHCHINSKY B A. Nested Newmark model to calculate the post-earthquake profile of slopes[J]. Engineering Geology, 2018, 233: 139-145. http://d.wanfangdata.com.cn/periodical/c7b18585b611b385c65cc9caf85cf430
|
[16] |
SONG J, FAN Q, FENG T, et al. A multi-block sliding approach to calculate the permanent seismic displacement of slopes[J]. Engineering Geology, 2019, 255: 48-58.
|
[17] |
SONG J, WU K, FENG T, et al. Coupled analysis of earthquake-induced permanent deformations at shallow and deep failure planes of slopes[J]. Engineering Geology, 2020, 274: 105688.
|
[18] |
SPENCER E. A method of analysis of the stability of embankments assuming parallel inter-slice forces[J]. Géotechnique, 1967, 17(1): 11-26. http://www.onacademic.com/detail/journal_1000039588501610_c145.html
|
[19] |
Rocscience Inc. RocScience, SLIDECP[R]. Toronto: Rocscience Inc. 2017.
|
[20] |
Itasca Consulting Group. Fast Lagrangian Analysis of Continua in 3 Dimensions[M]// Minneapolis: Itasca Consulting Group, 2018.
|
[21] |
黄琳. 地震作用下成层土边坡的动力稳定性分析[D]. 成都: 西南交通大学, 2017.
HUANG Lin. Dynamic Stability Analysis of Layered Soil Slope Under Seismic Action[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
|
[1] | LIU Ji-fu, ZHENG Gang. Influences of bearing capacity of piles on stability of embankment with rigid pile composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 1992-1999. DOI: 10.11779/CJGE201911003 |
[2] | DIAO Yu, LI Guang-shuai, ZHENG Gang. Influencing factors of deep excavation on bearing capacity and settlement of piles beneath excavation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 207-211. DOI: 10.11779/CJGE2017S2050 |
[3] | YIN Xin, ZHOU Hai-zuo, ZHENG Gang. Seismic bearing capacity of strip footings adjacent to slopes[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 95-98. DOI: 10.11779/CJGE2017S2024 |
[4] | TIAN Xue-fei, LU Hai-jun, YAN Jing-xia, CHU Cheng-fu, LU Li-hao, DONG Man-sheng. es Comparative study on methods for bearing capacity of foundation with post-grouting drilling piles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 372-377. |
[5] | Centrifugal model tests on bearing capacity of uplift piles under deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3). |
[6] | ZHOU Jian, KONG Xiangli, WANG Xiaocun. Bearing capacity behaviours and failure modes of reinforced grounds[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1265-1269. |
[7] | LIANG Bo, YANG Youhai. Theory and experiment on bearing capacity of reinforced sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(1): 123-127. |
[8] | CHEN Zhimin, JIA Lihong. BP networks in the forecast of bearing capacity of composite foundation with rammed expanded piles[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(3): 286-289. |
[9] | Hong Changhua, Gong Xiaonan, Wen Xiaogui. Probability analysis of the bearing capacity of deep mixing composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 279-283. |
[10] | Liu Chun. Experimental research on bearing capacity of belled pile in weak soil[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(6): 40-44. |