• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Bin, SHAO Shuai, SHAO Shengjun, WEI Junzheng. Dynamic response of slopes in hilly regions of loess and analysis method for their seismic subsidence deformation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 869-875. DOI: 10.11779/CJGE20220011
Citation: ZHANG Bin, SHAO Shuai, SHAO Shengjun, WEI Junzheng. Dynamic response of slopes in hilly regions of loess and analysis method for their seismic subsidence deformation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 869-875. DOI: 10.11779/CJGE20220011

Dynamic response of slopes in hilly regions of loess and analysis method for their seismic subsidence deformation

More Information
  • Received Date: January 02, 2022
  • Available Online: April 16, 2023
  • The hilly region of loess is prone to slope instability of seismic subsidence. Through the dynamic centrifugal model tests and the finite difference nonlinear dynamic analysis methods, the dynamic response and deformation mechanism of loess slopes under earthquakes are studied. The acceleration and displacement responses of the generalized loess slopes under earthquakes are explored. The empirical formula for the seismic subsidence coefficient of loess and the method for estimating the seismic subsidence of loess field are proposed based on the dynamic single shear tests, and they are also used to calculate the seismic subsidence of loess slopes. The results show that the loess slope has a magnification effect on the seismic loads, the acceleration magnification coefficient increases nonlinearly along the elevation, and the dynamic magnification effects of the slope surface are greater than those inside the slope. The seismic subsidence of the slope is closely related to the thickness of the soil layer. The seismic subsidence coefficient increases logarithmically with elevation. The failure form of loess slopes under earthquakes is the result of the two-way coupling of horizontal sliding deformation and vertical seismic subsidence deformation. The tensile fissures at the top of the slope and the dislocation fissures on the slope surface are widely developed, and the uneven settlement of the seismic subsidence leads to the formation of dislocation steps on the slope surface.
  • [1]
    王兰民. 黄土动力学[M]. 北京: 地震出版社, 2003: 1-7.

    WANG Lanmin. Loess Dynamics[M]. Beijing: Seismological Press, 2003: 1-7. (in Chinese)
    [2]
    刘立平, 雷尊宇, 周富春. 地震边坡稳定分析方法综述[J]. 重庆交通学院学报, 2001, 20(3): 83-88. doi: 10.3969/j.issn.1674-0696.2001.03.022

    LIU Liping, LEI Zunyu, ZHOU Fuchun. The evaluation of seismic slope stability analysis methods[J]. Journal of Chnongqing Jiaotong University, 2001, 20(3): 83-88. (in Chinese) doi: 10.3969/j.issn.1674-0696.2001.03.022
    [3]
    王兰民, 张振中. 地震时黄土震陷量的估算方法[J]. 自然灾害学报, 1993, 2(3): 85-94. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH199303015.htm

    WANG Lanmin, ZHANG Zhenzhong. A method of estimating the quantity of seismic subsidence in loess deposits during earthquakes[J]. Journal of Natural Disasters, 1993, 2(3): 85-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH199303015.htm
    [4]
    孙军杰, 王兰民, 秋仁东, 等. 基于物理力学机制的黄土震陷数学估算模型[J]. 工程力学, 2012, 29(5): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201205011.htm

    SUN Junjie, WANG Lanmin, QIU Rendong, et al. A mathematical estimation model for seismic subsidence of loess based on physical-mechanical mechanism[J]. Engineering Mechanics, 2012, 29(5): 53-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201205011.htm
    [5]
    曹继东, 王权民, 陈正汉. 厦门填海土的振动台试验研究[J]. 岩石力学与工程学报, 2004, 23(20): 3529-3535. doi: 10.3321/j.issn:1000-6915.2004.20.025

    CAO Jidong, WANG Quanmin, CHEN Zhenghan. Testing study of shaking table on made-land soil in seabeach of Amoy[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(20): 3529-3535. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.20.025
    [6]
    陈正汉, 李刚, 王权民, 等. 厦门典型地基土的地震反应分析与评价[J]. 岩石力学与工程学报, 2005, 24(21): 3864-3875. doi: 10.3321/j.issn:1000-6915.2005.21.010

    CHEN Zhenghan, LI Gang, WANG Quanmin, et al. Analysis and evaluation of seismic reaction of typical foundation soils in Xiamen[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(21): 3864-3875. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.21.010
    [7]
    翁效林, 熊元克, 裴凯. 黄土震陷变形特征的离心模型试验研究[J]. 矿物学报, 2006, 26(4): 460-464. doi: 10.3321/j.issn:1000-4734.2006.04.016

    WENG Xiaolin, XIONG Yuanke, PEI Kai. Study of loess seismic subsidence deformation characteristics by centrifuge scale-down test[J]. Acta Mineralogica Sinica, 2006, 26(4): 460-464. (in Chinese) doi: 10.3321/j.issn:1000-4734.2006.04.016
    [8]
    关君蔚. 甘肃黄土丘陵地区水土保持林林种的调查研究[J]. 林业科学, 1962(4): 268-282. https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE196204001.htm

    GUAN Junwei. Investigation on forest species of soil and water conservation in loess hilly region of Gansu Province[J]. Scientia Silvae Sinicae, 1962(4): 268-282. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE196204001.htm
    [9]
    李京爽, 侯瑜京, 徐泽平, 等. R500B离心机振动台动力试验性能分析[J]. 长江科学院院报, 2012, 29(4): 67-70, 79. doi: 10.3969/j.issn.1001-5485.2012.04.015

    LI Jingshuang, HOU Yujing, XU Zeping, et al. Experimental analysis on dynamic characters of R500B shake table for the IWHR geotechnical centrifuge[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(4): 67-70, 79. (in Chinese) doi: 10.3969/j.issn.1001-5485.2012.04.015
    [10]
    LI Y D, ZHENG S, LUO W L, et al. Design and performance of a laminar shear container for shaking table tests[J]. Soil Dynamics and Earthquake Engineering, 2020, 135: 106157.
    [11]
    邵帅. 原状黄土复杂应力条件的震陷机理与动力响应特性[D]. 西安: 西安理工大学, 2021.

    SHAO Shuai. Seismic Mechanism and Dynamic Response Characteristics of Complex Stress Condition in Situ Loess[D]. Xi'an: Xi'an University of Technology, 2021. (in Chinese)
    [12]
    陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 2版. 北京: 中国水利水电出版社, 2013: 210-234.

    CHEN Yumin, XU Dingping. FLAC/FLAC3D Foundation and Engineering Example[M]. 2nd ed. Beijing: China Water & Power Press, 2013: 210-234. (in Chinese)
    [13]
    邵生俊, 王强, 吴飞洁. 一种新型动单剪仪的研发与试验验证[J]. 岩土力学, 2017, 38(6): 1841-1848. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201706036.htm

    SHAO Shengjun, WANG Qiang, WU Feijie. Development and test verification of a new cyclic simple shear apparatus[J]. Rock and Soil Mechanics, 2017, 38(6): 1841-1848. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201706036.htm
    [14]
    吴飞洁. 非饱和黄土震陷变形的动单剪试验研究[D]. 西安: 西安理工大学, 2017.

    WU Feijie. Experimental Study on the Deformation of Dynamic Shear of Unsaturated Loess[D]. Xi'an: Xi'an University of Technology, 2017. (in Chinese)
    [15]
    张振中, 张冬丽, 刘红玫. 黄土震陷灾害典型震例的综合研究[J]. 西北地震学报, 2005, 27(1): 36-41, 46.

    ZHANG Zhenzhong, ZHANG Dongli, LIU Hongmei. Comprehensive study on seismic subsidence of loess under earthquake[J]. Northwestern Seismological Journal, 2005, 27(1): 36-41, 46. (in Chinese)
  • Related Articles

    [1]LIU Zhong-yu, CHEN Jie. Active earth pressure against rigid retaining wall considering shear stress under translation mode[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2254-2261. DOI: 10.11779/CJGE201612014
    [2]HU Jun-qiang, ZHANG Yong-xing, CHEN Lin, CHEN Jian-gong. Active earth pressure on retaining wall under non-limit state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 381-387.
    [3]DAI Zihang, LIN Zhiyong, ZHENG Yeping, LU Caijin. Finite element method for computations of active earth pressures acting on L-shaped retaining walls with reduced friction coefficients of base bottoms[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 508-514.
    [4]PENG Shuquan, LIU Aihua, FAN Ling. Active earth pressure for rigid retaining walls with different displacement modes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 32-35.
    [5]YING Hongwei, CAI Qipeng. Distribution of active earth pressure against flexible retaining walls with drum deformation[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1805-1810.
    [6]LIN Zhiyong, DAI Zihang, SU Meixuan. Analytical solution of active earth pressure acting on retaining walls under complicated conditions[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 555-559.
    [7]YING Hongwei, JIANG Bo, XIE Kanghe. Distribution of active earth pressure against retaining walls considering arching effects[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 717-722.
    [8]LI Juwen, WANG Chong, LIANG Yongduo, FENG Zhen. Computation of earth pressure of cohesive backfill on retaining wall[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 650-652.
    [9]WANG Yuanzhan, LI Wei, HUANG Changhong. Distribution of active earth pressure with wall movement of rotation about base[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 208-211.
    [10]Zhou Yingying, Ren Meilong. An Experimental Study on Active Earth Pressure behind Rigid Retaining Wall[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(2): 19-26.

Catalog

    Article views (362) PDF downloads (114) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return