• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GAO Xinjun, WANG Jianbo, ZHANG Hao, DUAN Penghui, ZHOU Tonghe, BAO Jianxin. Field tests on bearing behaviors of cement mortar-expanded precast piles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 634-643. DOI: 10.11779/CJGE20220005
Citation: GAO Xinjun, WANG Jianbo, ZHANG Hao, DUAN Penghui, ZHOU Tonghe, BAO Jianxin. Field tests on bearing behaviors of cement mortar-expanded precast piles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 634-643. DOI: 10.11779/CJGE20220005

Field tests on bearing behaviors of cement mortar-expanded precast piles

More Information
  • Received Date: January 02, 2022
  • Available Online: March 15, 2023
  • The cement mortar-expanded precast pile is a new type of expanded pile technology, which improves the overall bearing performance of the expanded piles and expands the engineering application range of the precast piles through the innovation of the pre-bored grouting method and the application of the high-quality factory grouting materials. In order to reveal their vertical bearing characteristics, the studies on the bearing performance of the expanded piles under different pile top pressure modes and pre-bored conditions are carried out based on the full-scale tests. The test results show that the pressure mode at pile top has small effects on the bearing performance of the expanded precast piles, but has significant ones on the internal load transfer mechanism. Compared with that of the full-section pressure, the axial force of inner precast piles under pressure alone is relatively large, and the decay rate is faster as the depth increases. The interaction between the inner precast piles and the outer cement mortar is more obvious for the internal precast piles under compression. Furthermore, different pre-bored conditions will cause different pile end support conditions, which have significant effects on the bearing performance of the expanded piles. The bearing capacity of the super-leading hole enlargement pile (SC) is greater than that of the isotonic enlargement pile (EC) and the short-leading hole enlargement pile (LC). The failure of all the test piles under the ultimate loads is the overall subsidence, indicating that the shear capacity of the interface between the inner precast piles and the outer cement mortar is greater than the shear action between the outer cement mortar and the surrounding soil. When the strength of the outer grouting materials is greater than 15 MPa, the interface damage between the inner precast piles and the outer materials may not be considered.
  • [1]
    WANG L Z, HE B, HONG Y, et al. Field tests of the lateral monotonic and cyclic performance of jet-grouting-reinforced cast-in-place piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(5): 06015001. doi: 10.1061/(ASCE)GT.1943-5606.0001287
    [2]
    刘松玉, 周建, 章定文, 等. 地基处理技术进展[J]. 土木工程学报, 2020, 53(4): 93-110. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202004010.htm

    LIU Songyu, ZHOU Jian, ZHANG Dingwen, et al. State of the art of the ground improvement technology in China[J]. China Civil Engineering Journal, 2020, 53(4): 93-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202004010.htm
    [3]
    WANG A H, ZHANG D W, DENG Y G. A simplified approach for axial response of single precast concrete piles in cement-treated soil[J]. International Journal of Civil Engineering, 2018, 16(10): 1491-1501. doi: 10.1007/s40999-018-0341-9
    [4]
    ZYKA K, MOHAJERANI A. Composite piles: a review[J]. Construction and Building Materials, 2016, 107: 394-410. doi: 10.1016/j.conbuildmat.2016.01.013
    [5]
    WONGLERT A, JONGPRADIST P. Impact of reinforced core on performance and failure behavior of stiffened deep cement mixing piles[J]. Computers and Geotechnics, 2015, 69: 93-104. doi: 10.1016/j.compgeo.2015.05.003
    [6]
    TANCHAISAWAT T, SURIYAVANAGUL P, JAMSAWANG P. Stiffened Deep Cement Mixing (SDCM) pile: laboratory investigation[C]// Proceedings of the International Conference on Concrete Construction, U K, 2008.
    [7]
    李立业. 劲性复合桩承载特性研究[D]. 南京: 东南大学, 2016.

    LI Liye. Study on the Bearing Capacity of Stiffened DCM Pile[D]. Nanjing: Southeast University, 2016. (in Chinese)
    [8]
    李立业, 刘松玉, 章定文, 等. 劲性复合桩承载力计算方法探讨[J]. 地下空间与工程学报, 2015, 11(增刊1): 43-47. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY201507001244.htm

    LI Liye, LIU Songyu, ZHANG Dingwen, et al. Bearing capacity calculations of strength composite piles[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(S1): 43-47. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY201507001244.htm
    [9]
    顾士坦, 施建勇, 王春秋, 等. 劲性搅拌桩芯桩荷载传递规律理论研究[J]. 岩土力学, 2011, 32(8): 2473-2478. doi: 10.3969/j.issn.1000-7598.2011.08.037

    GU Shitan, SHI Jianyong, WANG Chunqiu, et al. Theoretical study of core pile load transfer regularity of reinforced mixing pile[J]. Rock and Soil Mechanics, 2011, 32(8): 2473-2478. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.08.037
    [10]
    GOTMAN A L, SOKOLOV L Y. Lateral load analysis of a composite pile[J]. Soil Mechanics and Foundation Engineering, 2018, 55(2): 103-109. doi: 10.1007/s11204-018-9510-8
    [11]
    李俊才, 邓亚光, 宋桂华, 等. 素混凝土劲性水泥土复合桩承载机理分析[J]. 岩土力学, 2009, 30(1): 181-185. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901041.htm

    LI Juncai, DENG Yaguang, SONG Guihua, et al. Analysis of load-bearing mechanism of composite foundation of plain concrete reinforced cement-soil mixing piles[J]. Rock and Soil Mechanics, 2009, 30(1): 181-185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901041.htm
    [12]
    李俊才, 张永刚, 邓亚光, 等. 管桩水泥土复合桩荷载传递规律研究[J]. 岩石力学与工程学报, 2014, 33(增刊1): 3068-3076. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1068.htm

    LI Juncai, ZHANG Yonggang, DENG Yaguang, et al. Load transfer mechanism of composite pile composed of jet-mixing cement and phc pile with core concrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3068-3076. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1068.htm
    [13]
    张永刚, 李俊才, 邓亚光. 管桩水泥土复合桩荷载传递机制试验研究[J]. 南京工业大学学报(自然科学版), 2013, 35(6): 79-85. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB201306017.htm

    ZHANG Yonggang, LI Juncai, DENG Yaguang. Experimental study of load transfer mechanism of composite pile of jet-mixing cement and PHC pile[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2013, 35(6): 79-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB201306017.htm
    [14]
    董平, 陈征宙, 秦然. 混凝土芯水泥土搅拌桩在软土地基中的应用[J]. 岩土工程学报, 2002, 24(2): 204-207. http://cge.nhri.cn/cn/article/id/10921

    DONG Ping, CHEN Zhengzhou, QIN Ran. Use of concrete-cored DCM pile in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 204-207. (in Chinese) http://cge.nhri.cn/cn/article/id/10921
    [15]
    董平, 秦然, 陈征宙. 混凝土芯水泥土搅拌桩的有限元研究[J]. 岩土力学, 2003, 24(3): 344-348. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200303005.htm

    DONG Ping, QIN Ran, CHEN Zhengzhou. FEM study of concrete-cored DCM pile[J]. Rock and Soil Mechanics, 2003, 24(3): 344-348. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200303005.htm
    [16]
    董平. 混凝土芯水泥土搅拌桩荷载传递机理研究[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2004.

    DONG Ping. Load Transfer Mechanism of Concrete-Cored DCM Pile[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2004. (in Chinese)
    [17]
    FARO V P, CONSOLI N C, SCHNAID F, et al. Field tests on laterally loaded rigid piles in cement treated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(6): 06015003.
    [18]
    JAMSAWANG P, BERGADO D T, VOOTTIPRUEX P. Field behaviour of stiffened deep cement mixing piles[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2011, 164(1): 33-49.
    [19]
    方光秀, 郑洪军. 劲性水泥砂浆土组合模型桩的极限承载力试验研究[J]. 四川建筑科学研究, 2016, 42(2): 55-59. https://cdmd.cnki.com.cn/Article/CDMD-10184-1014359803.htm

    FANG Guangxiu, ZHENG Hongjun. Experimental study on ultimate bearing capacity of reinforced cement mortar pile of soil composition model[J]. Sichuan Building Science, 2016, 42(2): 55-59. (in Chinese) https://cdmd.cnki.com.cn/Article/CDMD-10184-1014359803.htm
    [20]
    叶观宝, 王萌, 程义, 等. 劲芯水泥土桩单桩竖向承载性能与破坏模式研究[J]. 施工技术, 2020, 49(7): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS202007001.htm

    YE Guanbao, WANG Meng, CHENG Yi, et al. Bearing behavior and failure mode of stiffened deep mixed column under vertical load[J]. Construction Technology, 2020, 49(7): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS202007001.htm
    [21]
    李怡秋. 劲性复合桩竖向承载特性的分析与研究[D]. 邯郸: 河北工程大学, 2018.

    LI Yiqiu. Analysis and Research on vertical Bearing Characteristics of Strength Composite Piles[D]. Handan: Hebei University of Engineering, 2018. (in Chinese)
    [22]
    刘振华, 修占国, 袁义臣, 等. 管桩单桩竖向极限承载力的沉降预估研究[J]. 路基工程, 2018(5): 90-93, 104. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201805018.htm

    LIU Zhenhua, XIU Zhanguo, YUAN Yichen, et al. The settlement prediction based on the test of vertical ultimate bearing capacity of single pipe pile[J]. Subgrade Engineering, 2018(5): 90-93, 104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201805018.htm
    [23]
    张培成, 孙玉文, 张殿树, 等. 基于饱和软土地基大承载力载体桩试验研究[J]. 河北水利电力学院学报, 2020, 30(1): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZX202001005.htm

    ZHANG Peicheng, SUN Yuwen, ZHANG Dianshu, et al. Experimental study on piles with ram-compacted bearing sphere for large bearing capacity based on saturated soft soil foundation[J]. Journal of Hebei University of Water Resources and Electric Engineering, 2020, 30(1): 19-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGZX202001005.htm
    [24]
    ZHANG Z, RAO F R, YE G B. Analytical modeling on consolidation of stiffened deep mixed column‐reinforced soft soil under embankment[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(1): 137-158.
  • Related Articles

    [1]An experimental study of micro-scale hydro-mechanical characteristic of unsaturated granular materials based on in-situ triaxial CT scanning test[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240074
    [2]ZHANG Ge, LIU Enlong. Binary-medium constitutive model for frozen soils based on CT dynamic scanning[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1888-1896. DOI: 10.11779/CJGE20220629
    [3]WANG Enliang, LI Yuang, REN Zhifeng, JIANG Haiqiang, LIU Chengqian, ZOU Yiyun, DU Shilin. Microstructural change of improved dispersive soil based on scanning electron microscope and nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1123-1132. DOI: 10.11779/CJGE20220331
    [4]SHEN Zhi-fu, SUN Tian-you, BAI Yu-fan, JIANG Ming-jing, ZHOU Feng. Extraction method for micro-structure parameters of clay based on imaging principles of scanning electron microscope[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 933-939. DOI: 10.11779/CJGE202105018
    [5]ZHANG Yi-jiang, CHEN Sheng-shui, FU Zhong-zhi. Experimental study on microstructure and compressibility of iron ore tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 61-66. DOI: 10.11779/CJGE2020S2011
    [6]JIANG Ming-jing, LÜ Lei, SHI An-ning, CAO Pei, WU Xiao-feng. Development of miniature dynamic triaxial apparatus for microct scanning and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 214-218. DOI: 10.11779/CJGE2020S1042
    [7]FENG Huai-ping, MA De-liang, LIU Qi-yuan, YE Chao-liang. Method for calculating three dimensional apparent porosity of soils based on SEM images[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 574-580. DOI: 10.11779/CJGE201903021
    [8]AN Ai-jun, LIAO Jing-yun. Modified mesostructure of Standard Gange Railway expansive soils of Mombasa- Nairobi based on nuclear magnetic resonance and scanning electron microscope[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 152-156. DOI: 10.11779/CJGE2018S2031
    [9]XU Du, FENG Xia-ting, LI Shao-jun, WU Shi-yong, QIU Shi-li, ZHOU Yang-yi, GAO Yao-hui. In-situ testing technique for tunnel deformation and structural plane of rock mass based on contactless laser scanning method and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1336-1343. DOI: 10.11779/CJGE201807022
    [10]CHEN Zhi-fu, CHEN De-li, YANG Jian-xue. Application of three-dimensional laser scanning technique in deformation monitoring of excavations[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 557-559.
  • Other Related Supplements

  • Cited by

    Periodical cited type(6)

    1. 谢柏涵,孔元元,张学飞,孙东彦,王智慧. 冻融循环作用下盐渍土损伤模型的建立及验证. 人民长江. 2025(02): 183-189+200 .
    2. 王瑞红,崔芸静,骆浩,王芳,包顺. 冻融作用对白家包滑坡狗牙根根土复合体强度影响研究. 水土保持研究. 2025(04): 208-216 .
    3. 孙超,谷鸿雁,郭浩天. 冻融循环次数对粉质黏土强度劣化影响的试验研究. 吉林建筑大学学报. 2024(05): 66-71 .
    4. 吕思清,朱杰兵,汪斌,祝永锁. 冻融荷载耦合作用下含开口裂隙砂岩宏细观损伤模型研究. 岩石力学与工程学报. 2023(05): 1124-1135 .
    5. 李新宇,凌贤长,曲娜. 考虑温度效应的冻结膨胀土统计损伤模型. 吉林大学学报(工学版). 2023(08): 2339-2349 .
    6. 张雁,薛晓雨,杨晓蕴. 低温状态下纤维加筋膨胀土数值模拟试验. 中国科技论文. 2022(12): 1351-1357 .

    Other cited types(5)

Catalog

    Article views (264) PDF downloads (105) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return