Citation: | ZHAO Teng-yuan, SONG Chao, HE Huan. Bayesian estimation of resilient modulus of Jiangsu soft soils from sparse data—Gaussian process regression and cone penetration test data-based modelling and analysis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 137-141. DOI: 10.11779/CJGE2021S2033 |
[1] |
陈开圣, 沙爱民. 压实黄土回弹模量试验研究[J]. 岩土力学, 2010, 31(3): 748-752, 759. doi: 10.3969/j.issn.1000-7598.2010.03.014
CHEN Kai-sheng, SHA Ai-min. Research on resilient modulus test of compacted loess[J]. Rock and Soil Mechanics, 2010, 31(3): 748-752, 759. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.03.014
|
[2] |
武红娟, 徐伟, 王选仓. 土基模量随季节变化规律及其数值的确定[J]. 工程地质学报, 2008, 16(1): 32-36. doi: 10.3969/j.issn.1004-9665.2008.01.007
WU Hong-juan, XU Wei, WANG Xuan-cang. Seasonal variations of subgrade soil resilient moduli and their value determination[J]. Journal of Engineering Geology, 2008, 16(1): 32-36. (in Chinese) doi: 10.3969/j.issn.1004-9665.2008.01.007
|
[3] |
刘维正, 曾奕珺, 姚永胜, 等. 含水率变化下压实路基土动态回弹模量试验研究与预估模型[J]. 岩土工程学报, 2019, 41(1): 175-183. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901024.htm
LIU Wei-zheng, ZENG Yi-jun, YAO Yong-sheng, et al. Experimental study and prediction model of dynamic resilient modulus of compacted subgrade soils subjected to moisture variation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 175-183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901024.htm
|
[4] |
LIU S Y, ZOU H F, CAI G J, et al. Multivariate correlation among resilient modulus and cone penetration test parameters of cohesive subgrade soils[J]. Engineering Geology, 2016, 209: 128-142. doi: 10.1016/j.enggeo.2016.05.018
|
[5] |
MOHAMMAD L N, HERATH A, ABU-FARSAKH M Y, et al. Prediction of resilient modulus of cohesive subgrade soils from dynamic cone penetrometer test parameters[J]. Journal of Materials in Civil Engineering, 2007, 19(11): 986-992. doi: 10.1061/(ASCE)0899-1561(2007)19:11(986)
|
[6] |
刘松玉, 吴燕开. 论我国静力触探技术 (CPT)现状与发展[J]. 岩土工程学报, 2004, 26(4): 553-556. doi: 10.3321/j.issn:1000-4548.2004.04.025
LIU Song-yu, WU Yan-kai. On the state -of-art and development of CPT in China[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 553-556. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.04.025
|
[7] |
张诚厚, 施健, 戴济群. 孔压静力触探试验的应用[J]. 岩土工程学报, 1997, 19(1): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC701.007.htm
ZHANG Cheng-hou, SHI Jian, DAI Ji-qun. The application of piezocone tests in China[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(1): 52-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC701.007.htm
|
[8] |
蔡国军, 刘松玉, 童立元, 等. 基于静力触探测试的国内外砂土液化判别方法[J]. 岩石力学与工程学报, 2008, 27(5): 1019-1027. doi: 10.3321/j.issn:1000-6915.2008.05.018
CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Evaluation of liquefaction of sandy soils based on cone penetration test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 1019-1027. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.05.018
|
[9] |
LUNNE T, POWELL J J, ROBERTSON P K. Cone Penetration Testing in Geotechnical Practice[M]. London, UK: Taylor & Francis, 1997.
|
[10] |
ZHAO T Y, XU L, WANG Y. Fast non-parametric simulation of 2D multi-layer cone penetration test (CPT) data without pre-stratification using Markov Chain Monte Carlo simulation[J]. Engineering Geology, 2020, 273: 105670. doi: 10.1016/j.enggeo.2020.105670
|
[11] |
PHOON K K. Modeling and simulation of stochastic data[C]//GeoCongress 2006. February 26-March 1, 2006, Atlanta, Georgia, USA. Reston, VA, USA: American Society of Civil Engineers, 2006: 1-17.
|
[12] |
CHING J, LIN G H, PHOON K K, et al. Correlations among some parameters of coarse-grained soils—the multivariate probability distribution model[J]. Canadian Geotechnical Journal, 2017, 54(9): 1203-1220. doi: 10.1139/cgj-2016-0571
|
[13] |
CHING J, PHOON K K. Correlations among some clay parameters—the multivariate distribution[J]. Canadian Geotechnical Journal, 2014, 51(6): 686-704. doi: 10.1139/cgj-2013-0353
|
[14] |
CHING J, PHOON K K, LI K H, et al. Multivariate probability distribution for some intact rock properties[J]. Canadian Geotechnical Journal, 2019, 56(8): 1080-1097.
|
[15] |
XU L, YAN D D, ZHAO T Y. Probabilistic evaluation of loess landslide impact using multivariate model[J]. Landslides, 2021, 18(3): 1011-1023.
|
[16] |
何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8): 1121-1129, 1137. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201308002.htm
HE Zhi-kun, LIU Guang-bin, ZHAO Xi-jing, et al. Overview of Gaussian process regression[J]. Control and Decision, 2013, 28(8): 1121-1129, 1137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201308002.htm
|
[17] |
RASMUSSEN C E, WILLIAMS C K I. Gaussian Processes for Machine Learning[M]. Cambridge, Massachusetts: The MIT Press, 2005.
|
[1] | ZHOU Xin, SHENG Jian-long, YE Zu-yang, LUO Wang, HUANG Shi-bing, CHENG Ai-ping. Effects of geometrical feature on Forchheimer-flow behavior through rough-walled rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2075-2083. DOI: 10.11779/CJGE202111014 |
[2] | CHEN Zi-yu, LI Guo-ying, WEI Kuang-min, WU Li-qiang, ZHU Yu-meng. Ultimate state and probability of particle breakage for rockfill materials based on fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1192-1200. DOI: 10.11779/CJGE202107003 |
[3] | ZHOU Feng-xi, WANG Li-ye, LAI Yuan-ming. Review and research on osmotic suction of saturated saline soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1199-1210. DOI: 10.11779/CJGE202007003 |
[4] | ZHU Sheng. Gradation equation and compaction characteristics of continuously distributed coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1899-1906. DOI: 10.11779/CJGE201910014 |
[5] | ZHANG Hong, YAN Xiao-hui, WANG Zhong-han, LIU Hai-yang. Migration law of salt in compacted aeolian sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 741-747. DOI: 10.11779/CJGE201904018 |
[6] | ZHU Sheng, ZHONG Chun-xin, WANG Jing, HE Shun-bin. Experimental study on filling standard of high rockfill dams with soil core[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 561-566. DOI: 10.11779/CJGE201903019 |
[7] | TAO Gao-liang, CHEN Yin, YUAN Bo, GAN Shi-chao, WU Xiao-kang, ZHU Xue-liang. Predicting soil-water retention curve based on NMR technology and fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1466-1472. DOI: 10.11779/CJGE201808012 |
[8] | ZHU Sheng, ZHONG Chun-xin, ZHENG Xi-lei, GAO Zhuang-pin, ZHAN Zhen-gang. Filling standards and gradation optimization of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 108-115. DOI: 10.11779/CJGE201801010 |
[9] | ZHU Sheng, DENG Shi-de, NING Zhi-yuan, WANG Jing. Gradation design method for rockfill materials based on fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1151-1155. DOI: 10.11779/CJGE201706023 |
[10] | WANG Sheng-fu, YANG Ping, LIU Guan-rong, FAN Wen-hu. Micro pore change and fractal characteristics of artificial freeze thaw soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1254-1261. DOI: 10.11779/CJGE201607012 |