• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YI Shun, YUE Ke-dong, CHEN Jian, HUANG Jue-hao, LI Jian-bin, QIU Yue-feng, TIAN Ning. Risk analysis of two-layer clay slopes considering spatial variability of shear strength[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 112-116. DOI: 10.11779/CJGE2021S2027
Citation: YI Shun, YUE Ke-dong, CHEN Jian, HUANG Jue-hao, LI Jian-bin, QIU Yue-feng, TIAN Ning. Risk analysis of two-layer clay slopes considering spatial variability of shear strength[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 112-116. DOI: 10.11779/CJGE2021S2027

Risk analysis of two-layer clay slopes considering spatial variability of shear strength

More Information
  • Received Date: August 12, 2021
  • Available Online: December 05, 2022
  • Anisotropy exists in the spatial variability of soil parameters. Therefore, it is rational to indicate the spatial distribution of slope parameters using anisotropy random fields. Based on the anisotropic random field of shear strength of soil for a two-layer slope, the effects of vertical scales of fluctuation, horizontal scales of fluctuation and coefficient of variation (COV) of soil parameters on the slope failure probability, instability modes and risk assessments are studied. The main conclusions are drawn as follows: with the increase of COV, the risk of slope failure gradually increases. In low-variability soils, there is almost no risks of slope failure. On the whole, the failure probability of slope is consistent with the risk of failure as COV increases. The deep-layer slop mode accounts for a large proportion, but with the increase of COV, the deep-layer slope mode gradually becomes the shallow slope one. When the scale of fluctuation (including horizontal and vertical) increases, the failure probability of slope and risks increase accordingly. However, when the scale of fluctuation exceed a particular size, which is related to the size of the slope, the increasing amplitude of failure probability and risks slows down as the scale of fluctuation increases.
  • [1]
    MORGENSTERN N R. Performance in geotechnical practice[J]. HKIE Transactions, 2000, 7(2): 2-15. doi: 10.1080/1023697X.2000.10667819
    [2]
    LUMB P. The variability of natural soils[J]. Canadian Geotechnical Journal, 1966, 3(2): 74-97. doi: 10.1139/t66-009
    [3]
    PHOON K K, KULHAWY F H. Characterization of geotechnical variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 612-624. doi: 10.1139/t99-038
    [4]
    ALONSO E E. Risk analysis of slopes and its application to slopes in Canadian sensitive clays[J]. Géotechnique, 1976, 26(3): 453-472. doi: 10.1680/geot.1976.26.3.453
    [5]
    程红战, 陈健, 王占盛, 等. 考虑旋转各向异性相关结构的黏土边坡稳定性分析[J]. 岩石力学与工程学报, 2017, 36(增刊2): 3965-3973. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2029.htm

    CHENG Hong-zhan, CHEN Jian, WANG Zhan-sheng, et al. Stability analysis of a clay slope accounting for the rotated anisotropy correlation structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 3965-3973. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2029.htm
    [6]
    GRIFFITHS D V, HUANG J S, FENTON G A. Influence of spatial variability on slope reliability using 2-D random fields[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(10): 1367-1378. doi: 10.1061/(ASCE)GT.1943-5606.0000099
    [7]
    HUANG J, LYAMIN A V, GRIFFITHS D V, et al. Quantitative risk assessment of landslide by limit analysis and random fields[J]. Computers and Geotechnics, 2013, 53: 60-67. doi: 10.1016/j.compgeo.2013.04.009
    [8]
    CHENG H Z, CHEN J, CHEN R P, et al. Risk assessment of slope failure considering the variability in soil properties[J]. Computers and Geotechnics, 2018, 103: 61-72. doi: 10.1016/j.compgeo.2018.07.006
    [9]
    EL-RAMLY H, MORGENSTERN N R, CRUDEN D M. Probabilistic stability analysis of a tailings dyke on presheared clay shale[J]. Canadian Geotechnical Journal, 2003, 40(1): 192-208. doi: 10.1139/t02-095
    [10]
    DAVIS M W. Production of conditional simulations via the LU triangular decomposition of the covariance matrix[J]. Mathematical Geology, 1987, 19(2): 91-98.
    [11]
    GUZZETTI F. Landslide hazard and risk assessment[D]. Bonn, Germany: Universitat Bonn, 2006.
    [12]
    HICKS M A, SAMY K. Influence of heterogeneity on undrained clay slope stability[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2002, 35(1): 41-49. doi: 10.1144/qjegh.35.1.41
    [13]
    李典庆, 肖特, 曹子君, 等. 基于高效随机有限元法的边坡风险评估[J]. 岩土力学, 2016, 37(7): 1994-2003. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201607021.htm

    LI Dian-qing, XIAO Te, CAO Zi-jun, et al. Slope risk assessment using efficient random finite element method[J]. Rock and Soil Mechanics, 2016, 37(7): 1994-2003. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201607021.htm
  • Related Articles

    [1]SHENG Zhi-qiang, TENG Yan-jing, LI Ping. Discussion on several problems in design of retaining structures of deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 94-101. DOI: 10.11779/CJGE202101011
    [2]XIONG Yi-bo, ZHONG Fang-ping, WANG Wan-peng, XIAO Wei-guo, WANG Lei-yuan, YANG Wen-xi, BAI You-liang, YANG Jin-chao. Structural design technology of reusable blast-resistant caverns in hard rock mass[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1759-1766. DOI: 10.11779/CJGE201909022
    [3]WANG Zong-jian, MA Shu-wen, TANG Xiao-shuang, WU Jin-ming, ZHI Xian-ping, LU Liang. Application of elastic cable theory in design of reinforced earth structure[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 122-129. DOI: 10.11779/CJGE201801012
    [4]LI Yuan-song, DUAN Xin, LI Yang, LI Xin-ping. Comparative research on design approaches on retaining structure for deep foundation pits in Chinese and European geotechnical design codes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 77-81. DOI: 10.11779/CJGE2014S2013
    [5]LI Ling, CHENG Shao-ping, WANG Bin, GAO Xu, LIU Xian-wu. Design and construction monitoring of supporting structures for foundation pit of Lefutianxia Building in Xiangyang[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk1): 132-137. DOI: 10.11779/CJGE2014S1023
    [6]TANG Jun. Design and analysis of retaining structures for a super-deep excavationin Shanghai using late-dismantling support[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 451-455.
    [7]CHEN Fu-qiang, YANG Guang-hua, ZHANG Yu-cheng, YAO Li-na. Discussion on value of coefficient in structural design of circular diaphragm wall[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 203-206.
    [8]Determination of design depth of soil-nailing protection structures[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5).
    [9]YUAN Jinrong, ZHOU Yuqian, LIU Xuezeng, YU Ning. Structural design of lining and parameter analysis for DOT shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 638-641.
    [10]Pon Jia-zheng. Design of Substructures and the Application of Finite Element Method[J]. Chinese Journal of Geotechnical Engineering, 1980, 2(4): 34-48.
  • Cited by

    Periodical cited type(2)

    1. 吴学震,姜杰,李大勇,蒋宇静. 深水注浆锚设计原理及其承载特性试验研究. 岩土力学. 2022(10): 2707-2716 .
    2. 刘金龙,祝磊,姚军,肖赟. 基于鱼雷锚施工的海洋组合式锚泊基础. 安徽建筑. 2021(05): 92-94 .

    Other cited types(5)

Catalog

    Article views (216) PDF downloads (131) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return