• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Zi-xi, LUO Fang-yue, ZHANG Ga. Centrifugal model tests on micro-pile-reinforced shallow foundation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 56-59. DOI: 10.11779/CJGE2021S2013
Citation: LI Zi-xi, LUO Fang-yue, ZHANG Ga. Centrifugal model tests on micro-pile-reinforced shallow foundation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 56-59. DOI: 10.11779/CJGE2021S2013

Centrifugal model tests on micro-pile-reinforced shallow foundation

More Information
  • Received Date: August 14, 2021
  • Available Online: December 05, 2022
  • Micro-piles are widely used in geotechnical projects such as foundation reinforcement. The centrifugal model tests are conducted on the micro-pile-reinforced and unreinforced shallow foundations during vertical loading. The deformations of the foundation and soil base are observed and compared for the micro-pile reinforcement effect. The test results show that the micro-piles transfer the vertical loads to the bearing stratum. The micro-piles bear the loads with a proportion of more than 75%. The micro-piles significantly decrease the settlement of shallow foundation and cause the soil deformation to a more uniform distribution. The micro-piles influence the soil deformation within a zone with a 1.5 times the width of the shallow foundation. The depth of the load influence zone decreases if the micro-piles are used. The new findings may provide references for the applications of micro-piles in practice.
  • [1]
    孙书伟, 朱本珍, 马惠民, 等. 微型桩群与普通抗滑桩抗滑特性的对比试验研究[J]. 岩土工程学报, 2009, 31(10): 1564-1570. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200910021.htm

    SUN Shu-wei, ZHU Ben-zhen, MA Hui-min, et al. Model tests on anti-sliding mechanism of micropile groups and anti-sliding piles[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1564-1570. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200910021.htm
    [2]
    JURAN H, BENSLIMANE A, BRUCE D A. Slope stabilization by micropile reinforcement[J]. Landslides, 1996: 1718-1726.
    [3]
    BORTHAKUR N, DEY A K. Evaluation of group capacity of micropile in soft clayey soil from experimental analysis using SVM-based prediction model[J]. International Journal of Geomechanics, 2020, 20(3): 4020008. doi: 10.1061/(ASCE)GM.1943-5622.0001606
    [4]
    ZHANG S J. A mechanism analysis of pile-soil interaction of micro-pile in building heightening and transformation[J]. Applied Mechanics and Materials, 2014, 501/502/503/504: 258-262.
    [5]
    TURAN A, HAFEZ D, EL NAGGAR M H. The performance of inclined secant micro-pile walls as active vibration barriers[J]. Soil Dynamics and Earthquake Engineering, 2013, 55: 225-232. doi: 10.1016/j.soildyn.2013.09.003
    [6]
    龚健, 陈仁朋, 陈云敏, 等. 微型桩原型水平荷载试验研究[J]. 岩石力学与工程学报, 2004, 23(20): 3541-3546. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200420032.htm

    GONG Jian, CHEN Ren-peng, CHEN Yun-min, et al. Prototype testing study on micropiles under lateral loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(20): 3541-3546. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200420032.htm
    [7]
    HUANG F Y, SHAN Y L, HE L F, et al. The mechanical behavior of predrilled-hole concrete micro-pile in integral abutment jointless bridges (IAJBs)[C]//2020 International Conference on Intelligent Transportation(ICITBS), Vientiane, 2020: 399-404.
    [8]
    WANG L P, ZHANG G. Centrifuge model test study on pile reinforcement behavior of cohesive soil slopes under earthquake conditions[J]. Landslides, 2014, 11(2): 213-223. doi: 10.1007/s10346-013-0388-2
    [9]
    LIU S J, LUO F Y, ZHANG G. Centrifuge model tests on pile-reinforced slopes subjected to drawdown[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(6): 1290-1300. doi: 10.1016/j.jrmge.2020.02.006
    [10]
    ZHANG G, HU Y, ZHANG J M. New image analysis-based displacement-measurement system for geotechnical centrifuge modeling tests[J]. Measurement, 2009, 42(1): 87-96. doi: 10.1016/j.measurement.2008.04.002
  • Cited by

    Periodical cited type(20)

    1. 刘新荣,罗新飏,郭雪岩,周小涵,王浩,许彬,郑颖人. 巫山段岸坡水岩劣化特征及危岩失稳破坏模式. 工程地质学报. 2025(01): 240-257 .
    2. 郭双枫,府金宇,张鹏,李宁. 断层控制的蠕滑型顺层岩质滑坡变形破坏机制与失稳模式. 地震工程学报. 2025(03): 542-553 .
    3. 白继航. 基于数值模拟的顺层岩质边坡动力响应研究. 山西交通科技. 2025(02): 62-65+110 .
    4. 刘新荣,王浩,郭雪岩,罗新飏,周小涵,许彬. 考虑消落带岩体劣化影响的典型危岩岸坡稳定性研究. 岩土力学. 2024(02): 563-576 .
    5. 何钰铭,赵振洋,谢迪,王金波,黄宁. 三峡库区岩质库岸劣化变形演化过程与规律分析——以破水峡库岸为例. 中国资源综合利用. 2024(02): 26-29 .
    6. 谢周州,赵炼恒,李亮,黄栋梁,张子健,周靖. 基于振动台试验的不同含石率土-石混合体边坡地震动响应差异性研究. 岩土力学. 2024(08): 2324-2337 .
    7. 周开挥,王玉良,韩嘉琦. 德兴铜矿南平山边坡稳定性分析及治理. 建筑技术开发. 2024(08): 123-126 .
    8. 赵黎,粟登峰,谭宝会,胡颖鹏,陈帮洪,李正国. 基于CRITIC-GRA-AHP法的敏感性排序理论及其在边坡稳定性分析中的应用. 矿业研究与开发. 2024(09): 82-93 .
    9. 张嘉伦,马强,蒋汇鹏. P_1波在饱和土和饱和冻土介质分界面上的透反射问题研究. 岩土力学. 2024(10): 3139-3152 .
    10. 王通,刘先峰,侯召旭,张俊,邵珠杰,田士军,胡金山. 碎裂状顺层岩质边坡地震动力响应与破坏模式. 工程科学与技术. 2023(02): 39-49 .
    11. 李天降. 富含伊利石软弱夹层的宣威群路堑顺层边坡开挖优化分析. 安全与环境工程. 2023(02): 129-135 .
    12. 刘新荣,郭雪岩,许彬,周小涵,曾夕,谢应坤,王?. 含消落带劣化岩体的危岩边坡动力累积损伤机制研究. 岩土力学. 2023(03): 637-648 .
    13. 蒋汇鹏,马强,曹亚鹏. P波在弹性介质与饱和冻土介质分界面上的透反射问题研究. 岩土力学. 2023(03): 916-929 .
    14. 周昌,马文超,胡元骏,史光明. 基于透明土的库水位骤降下消落带滑坡-伞型锚体系变形破坏机理. 工程地质学报. 2023(04): 1407-1417 .
    15. 邹广明. 基于模型试验的堤防岸坡土层含水特征及安全稳定性影响研究. 四川水利. 2023(04): 38-42 .
    16. 黄浩,余姝,郭健,赵鹏,张枝华. 顺层陡倾斜坡溃屈破坏机理研究. 煤炭科技. 2023(05): 9-16 .
    17. 宋健. 某高速公路岩质高边坡破坏机理及稳定性分析. 山西建筑. 2023(24): 82-85 .
    18. 魏宇,曾令涛. 岩质高边坡稳定性分析及防治措施研究——以洋溪水利枢纽船闸下引航道高边坡为例. 广西水利水电. 2023(06): 1-8 .
    19. 殷跃平,王鲁琦,赵鹏,张枝华,黄波林,王雪冰. 三峡库区高陡岸坡溃屈失稳机理及防治研究. 水利学报. 2022(04): 379-391 .
    20. 宋俊宏. 基于PFC的乔连河岸坡岩石力学特性及动力响应特征研究. 甘肃水利水电技术. 2022(06): 27-31+37 .

    Other cited types(9)

Catalog

    Article views PDF downloads Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return