• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Hai-wei, DANG Fa-ning, TIAN Wei, MAO Lu-ming. Prediction of permeability of clay by modified Kozeny-Carman equation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 186-191. DOI: 10.11779/CJGE2021S1034
Citation: LIU Hai-wei, DANG Fa-ning, TIAN Wei, MAO Lu-ming. Prediction of permeability of clay by modified Kozeny-Carman equation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 186-191. DOI: 10.11779/CJGE2021S1034

Prediction of permeability of clay by modified Kozeny-Carman equation

More Information
  • Received Date: December 14, 2020
  • Available Online: December 05, 2022
  • The Kozeny-Carman equation has definite physical meaning, and can be widely used in calculating the permeability coefficient of sand.In order to improve the accuracy of using the conventional Kozeny-Carman equation to predict the permeability coefficient for saturated clay, firstly, the theoretical model for equal spherical particle is established, quantifying the share of absorbed water film occupied total pore space, so the permeability is greatly affected.According to the relationship between Atterberg limits and content of absorbed water film, the formula for calculating the efficient void ratio is derivated by the liquid limit.Then, the conventional Kozeny-Carman equation is modified.Finally, the proportion coefficient of absorbed water quality to liquid limit in Hefei clay is calculated by thermal gravimetric tests.Substituting the relevant physical parameters of Hefei clay into the unmodified and modified Kozeny-Carman equation, by comparing the calculated permeability coefficient with the measured value of laboratory tests, the results show that the modified Kozeny-Carman equation can be more accurate for estimating the permeability coefficient of clay.
  • [1]
    谷任国, 房营光. 极细颗粒黏土渗流离子效应的试验研究[J]. 岩土力学, 2009, 30(6): 1595-1598. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200906011.htm

    GU Ren-guo, FANG Ying-guang. Experiment study on the ion effects on fine grained soil seepage[J]. Rock and Soil Mechanics, 2009, 30(6): 1595-1598. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200906011.htm
    [2]
    SINGH P N, WALLENDER W W. Effects of adsorbed water layer in predicting saturated hydraulic conductivity for clays with Kozeny-Carman equation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(6): 829-836. doi: 10.1061/(ASCE)1090-0241(2008)134:6(829)
    [3]
    刘清秉, 项伟, 张伟锋, 等. 离子土壤固化剂改性膨胀土的试验研究[J]. 岩土力学, 2009, 30(8): 2286-2291. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200908016.htm

    LIU Qing-bing, XIANG Wei, ZHANG Wei-feng, et al. Experimental study of ionic soil stabilizer-improves expansive soil[J]. Rock and Soil Mechanics, 2009, 30(8): 2286-2291. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200908016.htm
    [4]
    王铁行, 李彦龙, 苏立君. 黄土表面吸附结合水的类型和界限划分[J]. 岩土工程学报, 2014, 36(5): 942-947. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405026.htm

    WANG Tie-hang, LI Yan-long, SU Li-jun. Types and boundaries of bound water on loess particle surface[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 942-947. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405026.htm
    [5]
    REDDI L N, THANGAVADIVELU S. Representation of compacted clay minifabric using random networks[J]. Journal of GeotechnicalEngineering, 1996, 122(11): 906-913.
    [6]
    何俊, 施建勇. 膨润土中饱和渗透系数的计算[J]. 岩石力学与工程学报, 2007, 26(增刊2): 3920-3925. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2047.htm

    He Jun, Shi Jian-yong. Calculation of satureated permeability ofbentonite[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 3920-3925. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2047.htm
    [7]
    梁健伟, 房营光. 极细颗粒黏土渗流特性试验研究[J]. 岩石力学与工程学报, 2010, 29(6): 1222-1230. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006019.htm

    Liang Jian-wei, Fang Ying-guang. Experimental study of seepage characteristics of tiny-particle clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1222-1230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006019.htm
    [8]
    崔德山, 项伟, 曹李靖, 等. ISS减小红色黏土结合水膜的试验研究[J]. 岩土工程学报, 2010, 32(6): 944-949. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006026.htm

    CUI De-shan, XIANG Wei1, CAO Li-jing, et al. Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 944-949(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006026.htm
    [9]
    CARMAN P C. Fluid flow through granular beds[J]. Trans Inst Chem Eng, 1937, 75(1): 150-166.
    [10]
    CARMAN P C. Permeability of saturated sands, soils and clays[J]. Agric Sci, 1939, 29(2): 263-273.
    [11]
    党发宁, 刘海伟, 王学武, 等. 基于有效孔隙比的黏性土渗透系数经验公式研究[J]. 岩石力学与工程学报, 2015, 34(9): 1909-1917. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm

    DANG Fa-ning, LIU Hai-wei, WANG Xue-wu, etal. Researchingclayeyempirical formula of permeability coefficient based on the theory of effective porosity ratio[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1909-1917. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm
    [12]
    王平全. 黏土表面结合水定量分析及水合机制研究[D]. 南充: 西南石油学院, 2001.

    WANG Ping-quan. The Study for Quantitative Analysis of Water Absorbed on Clays and Their Hydration Mechanism[D]. Nanchong: Southwest Petroleum Institute, 2001. (in Chinese)
  • Cited by

    Periodical cited type(4)

    1. 许旭堂,陈翔龙,杨枫,鲜振兴,徐祥. 循环荷载对充填结构面岩体剪切特性的影响. 长安大学学报(自然科学版). 2025(01): 24-37 .
    2. 杜淼然,尹培杰,张越,晏长根,欧运起,付弘哲. 基于分形特征的3D打印岩石结构面剪切特性研究. 工程地质学报. 2025(02): 458-470 .
    3. 班力壬,杜伟升,候宇航,戚承志,陶志刚. 考虑实际接触三维粗糙度退化的软岩节理剪胀规律预测模型. 岩土工程学报. 2024(05): 1008-1017 . 本站查看
    4. 焦峰,许江,彭守建,何美鑫,张心睿,程亮. 常法向刚度条件下人工结构面剪切力学特性及损伤演化规律试验研究. 煤炭学报. 2023(11): 4065-4077 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return