• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GE Shangqi, JIANG Wenhao, ZHENG Lingwei, XIE Xinyu, XIE Kanghe. Analytical solution for one-dimensional electroosmosis consolidation considering threshold potential gradient under time-dependent loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 580-589. DOI: 10.11779/CJGE20211555
Citation: GE Shangqi, JIANG Wenhao, ZHENG Lingwei, XIE Xinyu, XIE Kanghe. Analytical solution for one-dimensional electroosmosis consolidation considering threshold potential gradient under time-dependent loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 580-589. DOI: 10.11779/CJGE20211555

Analytical solution for one-dimensional electroosmosis consolidation considering threshold potential gradient under time-dependent loading

More Information
  • Received Date: December 26, 2021
  • Available Online: March 15, 2023
  • The concept of the threshold potential gradient is introduced into the electroosmosis consolidation theory. The governing equation for one-dimensional electroosmosis consolidation considering the effective potential attenuation with time-dependent loading is established based on the corresponding assumptions. The general analytical solutions for electroosmosis consolidation are obtained by the algebraic transformation and variable separation methods. Meanwhile, the expressions for the analytical solutions of electroosmosis consolidation under common loading patterns are given. The correctness of the proposed solutions is verified by comparing the degenerative analytical solutions in this study with the existing analytical solutions, combined with the comparison between the calculated results of the proposed solutions and the finite difference solutions. Based on the proposed analytical solutions, the effects of the related parameters on the electroosmosis consolidation characteristics of soft soils are analyzed. The results show that the existence of the threshold potential gradient reduces the absolute value of the excess pore water pressure and the settlement of soft soils. The decrease in hydraulic permeability coefficient is conducive to electroosmosis consolidation. The settlement of soft soils increases with the increasing ratio of electroosmosis permeability coefficient to hydraulic permeability coefficient, which leads to a better drainage and consolidation effect. When the soft soils are strengthened by the combined electroosmosis and surcharge preloading, the electroosmosis reduces the maximum value of the positive excess pore water pressure caused by time-dependent loading, which is helpful in improving the stability of soft soils during the consolidation process.
  • [1]
    郑凌逶, 谢新宇, 谢康和, 等. 电渗法加固地基试验及应用研究进展[J]. 浙江大学学报(工学版), 2017, 51(6): 1064-1073. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201706002.htm

    ZHENG Lingwei, XIE Xinyu, XIE Kanghe, et al. Test and application research advance on foundation reinforcement by electro-osmosis method[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(6): 1064-1073. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201706002.htm
    [2]
    GE S Q, ZANG J C, WANG Y C, et al. Combined stabilization/solidification and electroosmosis treatments for dredged marine silt[J]. Marine Georesources & Geotechnology, 2021, 39(10): 1157-1166.
    [3]
    OU C Y, CHIEN S C, SYUE Y T, et al. A novel electroosmotic chemical treatment for improving the clay strength throughout the entire region[J]. Applied Clay Science, 2018, 153: 161-171. doi: 10.1016/j.clay.2017.11.031
    [4]
    刘飞禹, 张志鹏, 王军, 等. 分级真空预压联合间歇电渗法加固疏浚淤泥宏微观分析[J]. 岩石力学与工程学报, 2020, 39(9): 1893–1901. doi: 10.13722/j.cnki.jrme.2020.0163

    LIU Feiyu, ZHANG Zhipeng, WANG Jun, et al. Macro and micro analyses of stepped vacuum preloading combined with intermittent electroosmosis for dredger slurry[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1893–1901. (in Chinese) doi: 10.13722/j.cnki.jrme.2020.0163
    [5]
    LIU H L, CUI Y L, SHEN Y, et al. A new method of combination of electroosmosis, vacuum and surcharge preloading for soft ground improvement[J]. China Ocean Engineering, 2014, 28(4): 511-528. doi: 10.1007/s13344-014-0042-3
    [6]
    ZHUANG Y F. Large scale soft ground consolidation using electrokinetic geosynthetics[J]. Geotextiles and Geomembranes, 2021, 49(3): 757-770. doi: 10.1016/j.geotexmem.2020.12.006
    [7]
    GAN Q Y, ZHOU J, LI C Y, et al. Vacuum preloading combined with electroosmotic dewatering of dredger fill using the vertical-layered power technology of a novel tubular electrokinetic geosynthetics: test and numerical simulation[J]. International Journal of Geomechanics, 2022, 22(1): 05021004. doi: 10.1061/(ASCE)GM.1943-5622.0002211
    [8]
    ESRIG M I. Pore pressures, consolidation, and electrokinetics[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(4): 899-921. doi: 10.1061/JSFEAQ.0001178
    [9]
    WAN T Y, MITCHELL J K. Electro-osmotic consolidation of soils[J]. Journal of the Geotechnical Engineering Division, 1976, 102(5): 473-491. doi: 10.1061/AJGEB6.0000270
    [10]
    FELDKAMP J R, BELHOMME G M. Large-strain electrokinetic consolidation: theory and experiment in one dimension[J]. Géotechnique, 1990, 40(4): 557-568. doi: 10.1680/geot.1990.40.4.557
    [11]
    王柳江, 刘斯宏, 王子健, 等. 堆载-电渗联合作用下的一维非线性大变形固结理论[J]. 工程力学, 2013, 30(12): 91-98. doi: 10.6052/j.issn.1000-4750.2012.04.0303

    WANG Liujiang, LIU Sihong, WANG Zijian, et al. A consolidation theory for one-dimensional large deformation problems under combined action of load and electroosmosis[J]. Engineering Mechanics, 2013, 30(12): 91-98. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.04.0303
    [12]
    WU H, HU L M, QI W G, et al. Analytical solution for electroosmotic consolidation considering nonlinear variation of soil parameters[J]. International Journal of Geomechanics, 2017, 17(5): 06016032. doi: 10.1061/(ASCE)GM.1943-5622.0000821
    [13]
    DENG A, ZHOU Y D. Modeling electroosmosis and surcharge preloading consolidation. Ⅰ: model formulation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(4): 04015093. doi: 10.1061/(ASCE)GT.1943-5606.0001417
    [14]
    杨晓宇, 董建华. 考虑有效电势衰减的一维电渗固结多态继承计算方法[J]. 岩石力学与工程学报, 2020, 39(12): 2530-2539. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012015.htm

    YANG Xiaoyu, DONG Jianhua. A polymorphic inheritance calculation method of one-dimensional electro-osmotic consolidation considering effective potential attenuation[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2530-2539. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012015.htm
    [15]
    王柳江, 王耀明, 刘斯宏, 等. 考虑有效电压衰减的二维真空预压联合电渗排水固结解析解[J]. 岩石力学与工程学报, 2019, 38(S1): 3134-3141. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1054.htm

    WANG Liujiang, WANG Yaoming, LIU Sihong, et al. 2D analytical solution of consolidation for vacuum preloading combined with electro-osmosis drainage considering reduction of effective voltage[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3134-3141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1054.htm
    [16]
    WANG L J, SHEN C M, LIU S H, et al. A hydro-mechanical coupled solution for electro-osmotic consolidation in unsaturated soils considering the decrease in effective voltage with time[J]. Computers and Geotechnics, 2021, 133: 104050. doi: 10.1016/j.compgeo.2021.104050
    [17]
    SHANG J Q. Electroosmosis-enhanced preloading consolidation via vertical drains[J]. Canadian Geotechnical Journal, 1998, 35(3): 491-499. doi: 10.1139/t98-018
    [18]
    王军, 符洪涛, 蔡袁强, 等. 线性堆载下软黏土一维电渗固结理论与试验分析[J]. 岩石力学与工程学报, 2014, 33(1): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401021.htm

    WANG Jun, FU Hongtao, CAI Yuanqiang, et al. Analyses of one dimensional electro-osmotic consolidation theory and test of soft clay under linear load[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 179-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401021.htm
    [19]
    李瑛, 龚晓南, 卢萌盟, 等. 堆载-电渗联合作用下的耦合固结理论[J]. 岩土工程学报, 2010, 32(1): 77-81. http://cge.nhri.cn/cn/article/id/11899

    LI Ying, GONG Xiaonan, LU Mengmeng, et al. Coupling consolidation theory under combined action of load and electro-osmosis[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 77-81. (in Chinese) http://cge.nhri.cn/cn/article/id/11899
    [20]
    SHANG J Q, TANG M, MIAO Z. Vacuum preloading consolidation of reclaimed land: a case study[J]. Canadian Geotechnical Journal, 1998, 35(5): 740-749. doi: 10.1139/t98-039
    [21]
    黄鹏华, 王柳江, 刘斯宏, 等. 真空堆载预压联合电渗竖向排水地基非线性固结解析解[J]. 岩石力学与工程学报, 2021, 40(1): 206-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202101019.htm

    HUANG Penghua, WANG Liujiang, LIU Sihong, et al. Nonlinear analytical solutions for vertical drainage consolidation of foundations under vacuum-surcharge preloading combined with electroosmosis[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(1): 206-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202101019.htm
    [22]
    苏金强, 王钊. 电渗的二维固结理论[J]. 岩土力学, 2004, 25(1): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200401029.htm

    SU Jinqiang, WANG Zhao. Theory of two-dimensional electro-osmotic consolidation of soils[J]. Rock and Soil Mechanics, 2004, 25(1): 125-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200401029.htm
    [23]
    谢新宇, 郑凌逶, 谢康和, 等. 电势梯度与电极间距变化的滨海软土电渗模型试验研究[J]. 土木工程学报, 2019, 52(1): 108-114, 121. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201901013.htm

    XIE Xinyu, ZHENG Lingwei, XIE Kanghe, et al. Experimental study on electro-osmosis of marine soft soil with varying potential gradient and electrode spacing[J]. China Civil Engineering Journal, 2019, 52(1): 108-114, 121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201901013.htm
    [24]
    XIE K H, WANG K, WANG Y L, et al. Analytical solution for one-dimensional consolidation of clayey soils with a threshold gradient[J]. Computers and Geotechnics, 2010, 37(4): 487-493.
    [25]
    李传勋, 董兴泉, 金丹丹, 等. 考虑起始水力坡降的软土大变形非线性固结分析[J]. 岩土力学, 2017, 38(2): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702011.htm

    LI Chuanxun, DONG Xingquan, JIN Dandan, et al. Nonlinear large-strain consolidation analysis of soft clay considering threshold hydraulic gradient[J]. Rock and Soil Mechanics, 2017, 38(2): 377-384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702011.htm
    [26]
    TANG X W, ONITSUKA K. Consolidation by vertical drains under time-dependent loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(9): 739-751.
    [27]
    江文豪, 詹良通, 杨策. 连续排水边界条件下饱和软土一维大变形固结解析解[J]. 中南大学学报(自然科学版), 2020, 51(5): 1289-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202005013.htm

    JIANG Wenhao, ZHAN Liangtong, YANG Ce. Analytical solution for one-dimensional large strain consolidation of saturated soft soils with continuous drainage boundary[J]. Journal of Central South University (Science and Technology), 2020, 51(5): 1289-1298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202005013.htm
    [28]
    JEYAKANTHAN V, GNANENDRAN C T, LO S C R. Laboratory assessment of electro-osmotic stabilization of soft clay[J]. Canadian Geotechnical Journal, 2011, 48(12): 1788-1802.
    [29]
    JONES C J F P, LAMONT-BLACK J, GLENDINNING S. Electrokinetic geosynthetics in hydraulic applications[J]. Geotextiles and Geomembranes, 2011, 29(4): 381-390.
  • Related Articles

    [1]YANG Zhongping, XIANG Gonggu, ZHAO Qian, LIU Xinrong, ZHAO Yalong. Shear mechanical properties of limestone structural plane under hydrodynamic force-dissolution[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1555-1563. DOI: 10.11779/CJGE20220682
    [2]YIN Hong, WANG Shu-hong, DONG Zhuo-ran, HOU Qin-kuan. RBF composite parameter model for structural surface roughness with factor analysis[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 721-730. DOI: 10.11779/CJGE202204015
    [3]ZHANG Shu-kun, WANG Lai-gui, LU Lu, WANG Shu-da, FENG Dian-zhi. Weakening effects of occurrence structural plane on mechanical properties of silty mudstone[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2015-2023. DOI: 10.11779/CJGE202011006
    [4]ZHANG Min-si, HUANG Run-qiu, WANG Shu-hong, YANG Yong. Spatial block identification method based on meshing and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 477-485. DOI: 10.11779/CJGE201603011
    [5]WANG Ju, ZHANG Cheng-cai. Deformation monitoring of earth-rock dams based on three-dimensional laser scanning technology[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2345-2350. DOI: 10.11779/CJGE201412026
    [6]CHEN Qing-fa, CHEN De-yan, WEI Cai-shou. Connectivity principle and distinguishing method of structural planes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 230-235.
    [7]TONG Zhiyi, CHEN Congxin, XU Jian, ZHANG Gaochao, LU Wei. Selection of shear strength of structural plane based on adhesion friction theory[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1367-1371.
    [8]CHEN Tielin, ZHOU Cheng, SHEN Zhujiang. Compression and shear test of structured clay[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 31-35.
    [9]Du Jingcan, Lu Zhaozhen. A new method to determine the parameters of structural planes in rock masses the weighted displacement back analysis[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 74-77.
    [10]Peng Guangzhong. Relation between the Mechanical Performance and Structural Plane Direction of Shale unedr uniaxial Compression[J]. Chinese Journal of Geotechnical Engineering, 1983, 5(2): 101-109.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return