Citation: | GE Shangqi, JIANG Wenhao, ZHENG Lingwei, XIE Xinyu, XIE Kanghe. Analytical solution for one-dimensional electroosmosis consolidation considering threshold potential gradient under time-dependent loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 580-589. DOI: 10.11779/CJGE20211555 |
[1] |
郑凌逶, 谢新宇, 谢康和, 等. 电渗法加固地基试验及应用研究进展[J]. 浙江大学学报(工学版), 2017, 51(6): 1064-1073. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201706002.htm
ZHENG Lingwei, XIE Xinyu, XIE Kanghe, et al. Test and application research advance on foundation reinforcement by electro-osmosis method[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(6): 1064-1073. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201706002.htm
|
[2] |
GE S Q, ZANG J C, WANG Y C, et al. Combined stabilization/solidification and electroosmosis treatments for dredged marine silt[J]. Marine Georesources & Geotechnology, 2021, 39(10): 1157-1166.
|
[3] |
OU C Y, CHIEN S C, SYUE Y T, et al. A novel electroosmotic chemical treatment for improving the clay strength throughout the entire region[J]. Applied Clay Science, 2018, 153: 161-171. doi: 10.1016/j.clay.2017.11.031
|
[4] |
刘飞禹, 张志鹏, 王军, 等. 分级真空预压联合间歇电渗法加固疏浚淤泥宏微观分析[J]. 岩石力学与工程学报, 2020, 39(9): 1893–1901. doi: 10.13722/j.cnki.jrme.2020.0163
LIU Feiyu, ZHANG Zhipeng, WANG Jun, et al. Macro and micro analyses of stepped vacuum preloading combined with intermittent electroosmosis for dredger slurry[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1893–1901. (in Chinese) doi: 10.13722/j.cnki.jrme.2020.0163
|
[5] |
LIU H L, CUI Y L, SHEN Y, et al. A new method of combination of electroosmosis, vacuum and surcharge preloading for soft ground improvement[J]. China Ocean Engineering, 2014, 28(4): 511-528. doi: 10.1007/s13344-014-0042-3
|
[6] |
ZHUANG Y F. Large scale soft ground consolidation using electrokinetic geosynthetics[J]. Geotextiles and Geomembranes, 2021, 49(3): 757-770. doi: 10.1016/j.geotexmem.2020.12.006
|
[7] |
GAN Q Y, ZHOU J, LI C Y, et al. Vacuum preloading combined with electroosmotic dewatering of dredger fill using the vertical-layered power technology of a novel tubular electrokinetic geosynthetics: test and numerical simulation[J]. International Journal of Geomechanics, 2022, 22(1): 05021004. doi: 10.1061/(ASCE)GM.1943-5622.0002211
|
[8] |
ESRIG M I. Pore pressures, consolidation, and electrokinetics[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(4): 899-921. doi: 10.1061/JSFEAQ.0001178
|
[9] |
WAN T Y, MITCHELL J K. Electro-osmotic consolidation of soils[J]. Journal of the Geotechnical Engineering Division, 1976, 102(5): 473-491. doi: 10.1061/AJGEB6.0000270
|
[10] |
FELDKAMP J R, BELHOMME G M. Large-strain electrokinetic consolidation: theory and experiment in one dimension[J]. Géotechnique, 1990, 40(4): 557-568. doi: 10.1680/geot.1990.40.4.557
|
[11] |
王柳江, 刘斯宏, 王子健, 等. 堆载-电渗联合作用下的一维非线性大变形固结理论[J]. 工程力学, 2013, 30(12): 91-98. doi: 10.6052/j.issn.1000-4750.2012.04.0303
WANG Liujiang, LIU Sihong, WANG Zijian, et al. A consolidation theory for one-dimensional large deformation problems under combined action of load and electroosmosis[J]. Engineering Mechanics, 2013, 30(12): 91-98. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.04.0303
|
[12] |
WU H, HU L M, QI W G, et al. Analytical solution for electroosmotic consolidation considering nonlinear variation of soil parameters[J]. International Journal of Geomechanics, 2017, 17(5): 06016032. doi: 10.1061/(ASCE)GM.1943-5622.0000821
|
[13] |
DENG A, ZHOU Y D. Modeling electroosmosis and surcharge preloading consolidation. Ⅰ: model formulation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(4): 04015093. doi: 10.1061/(ASCE)GT.1943-5606.0001417
|
[14] |
杨晓宇, 董建华. 考虑有效电势衰减的一维电渗固结多态继承计算方法[J]. 岩石力学与工程学报, 2020, 39(12): 2530-2539. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012015.htm
YANG Xiaoyu, DONG Jianhua. A polymorphic inheritance calculation method of one-dimensional electro-osmotic consolidation considering effective potential attenuation[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2530-2539. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012015.htm
|
[15] |
王柳江, 王耀明, 刘斯宏, 等. 考虑有效电压衰减的二维真空预压联合电渗排水固结解析解[J]. 岩石力学与工程学报, 2019, 38(S1): 3134-3141. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1054.htm
WANG Liujiang, WANG Yaoming, LIU Sihong, et al. 2D analytical solution of consolidation for vacuum preloading combined with electro-osmosis drainage considering reduction of effective voltage[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3134-3141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1054.htm
|
[16] |
WANG L J, SHEN C M, LIU S H, et al. A hydro-mechanical coupled solution for electro-osmotic consolidation in unsaturated soils considering the decrease in effective voltage with time[J]. Computers and Geotechnics, 2021, 133: 104050. doi: 10.1016/j.compgeo.2021.104050
|
[17] |
SHANG J Q. Electroosmosis-enhanced preloading consolidation via vertical drains[J]. Canadian Geotechnical Journal, 1998, 35(3): 491-499. doi: 10.1139/t98-018
|
[18] |
王军, 符洪涛, 蔡袁强, 等. 线性堆载下软黏土一维电渗固结理论与试验分析[J]. 岩石力学与工程学报, 2014, 33(1): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401021.htm
WANG Jun, FU Hongtao, CAI Yuanqiang, et al. Analyses of one dimensional electro-osmotic consolidation theory and test of soft clay under linear load[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 179-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401021.htm
|
[19] |
李瑛, 龚晓南, 卢萌盟, 等. 堆载-电渗联合作用下的耦合固结理论[J]. 岩土工程学报, 2010, 32(1): 77-81. http://cge.nhri.cn/cn/article/id/11899
LI Ying, GONG Xiaonan, LU Mengmeng, et al. Coupling consolidation theory under combined action of load and electro-osmosis[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 77-81. (in Chinese) http://cge.nhri.cn/cn/article/id/11899
|
[20] |
SHANG J Q, TANG M, MIAO Z. Vacuum preloading consolidation of reclaimed land: a case study[J]. Canadian Geotechnical Journal, 1998, 35(5): 740-749. doi: 10.1139/t98-039
|
[21] |
黄鹏华, 王柳江, 刘斯宏, 等. 真空堆载预压联合电渗竖向排水地基非线性固结解析解[J]. 岩石力学与工程学报, 2021, 40(1): 206-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202101019.htm
HUANG Penghua, WANG Liujiang, LIU Sihong, et al. Nonlinear analytical solutions for vertical drainage consolidation of foundations under vacuum-surcharge preloading combined with electroosmosis[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(1): 206-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202101019.htm
|
[22] |
苏金强, 王钊. 电渗的二维固结理论[J]. 岩土力学, 2004, 25(1): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200401029.htm
SU Jinqiang, WANG Zhao. Theory of two-dimensional electro-osmotic consolidation of soils[J]. Rock and Soil Mechanics, 2004, 25(1): 125-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200401029.htm
|
[23] |
谢新宇, 郑凌逶, 谢康和, 等. 电势梯度与电极间距变化的滨海软土电渗模型试验研究[J]. 土木工程学报, 2019, 52(1): 108-114, 121. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201901013.htm
XIE Xinyu, ZHENG Lingwei, XIE Kanghe, et al. Experimental study on electro-osmosis of marine soft soil with varying potential gradient and electrode spacing[J]. China Civil Engineering Journal, 2019, 52(1): 108-114, 121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201901013.htm
|
[24] |
XIE K H, WANG K, WANG Y L, et al. Analytical solution for one-dimensional consolidation of clayey soils with a threshold gradient[J]. Computers and Geotechnics, 2010, 37(4): 487-493.
|
[25] |
李传勋, 董兴泉, 金丹丹, 等. 考虑起始水力坡降的软土大变形非线性固结分析[J]. 岩土力学, 2017, 38(2): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702011.htm
LI Chuanxun, DONG Xingquan, JIN Dandan, et al. Nonlinear large-strain consolidation analysis of soft clay considering threshold hydraulic gradient[J]. Rock and Soil Mechanics, 2017, 38(2): 377-384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702011.htm
|
[26] |
TANG X W, ONITSUKA K. Consolidation by vertical drains under time-dependent loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(9): 739-751.
|
[27] |
江文豪, 詹良通, 杨策. 连续排水边界条件下饱和软土一维大变形固结解析解[J]. 中南大学学报(自然科学版), 2020, 51(5): 1289-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202005013.htm
JIANG Wenhao, ZHAN Liangtong, YANG Ce. Analytical solution for one-dimensional large strain consolidation of saturated soft soils with continuous drainage boundary[J]. Journal of Central South University (Science and Technology), 2020, 51(5): 1289-1298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202005013.htm
|
[28] |
JEYAKANTHAN V, GNANENDRAN C T, LO S C R. Laboratory assessment of electro-osmotic stabilization of soft clay[J]. Canadian Geotechnical Journal, 2011, 48(12): 1788-1802.
|
[29] |
JONES C J F P, LAMONT-BLACK J, GLENDINNING S. Electrokinetic geosynthetics in hydraulic applications[J]. Geotextiles and Geomembranes, 2011, 29(4): 381-390.
|
[1] | YANG Zhongping, XIANG Gonggu, ZHAO Qian, LIU Xinrong, ZHAO Yalong. Shear mechanical properties of limestone structural plane under hydrodynamic force-dissolution[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1555-1563. DOI: 10.11779/CJGE20220682 |
[2] | YIN Hong, WANG Shu-hong, DONG Zhuo-ran, HOU Qin-kuan. RBF composite parameter model for structural surface roughness with factor analysis[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 721-730. DOI: 10.11779/CJGE202204015 |
[3] | ZHANG Shu-kun, WANG Lai-gui, LU Lu, WANG Shu-da, FENG Dian-zhi. Weakening effects of occurrence structural plane on mechanical properties of silty mudstone[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2015-2023. DOI: 10.11779/CJGE202011006 |
[4] | ZHANG Min-si, HUANG Run-qiu, WANG Shu-hong, YANG Yong. Spatial block identification method based on meshing and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 477-485. DOI: 10.11779/CJGE201603011 |
[5] | WANG Ju, ZHANG Cheng-cai. Deformation monitoring of earth-rock dams based on three-dimensional laser scanning technology[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2345-2350. DOI: 10.11779/CJGE201412026 |
[6] | CHEN Qing-fa, CHEN De-yan, WEI Cai-shou. Connectivity principle and distinguishing method of structural planes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 230-235. |
[7] | TONG Zhiyi, CHEN Congxin, XU Jian, ZHANG Gaochao, LU Wei. Selection of shear strength of structural plane based on adhesion friction theory[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1367-1371. |
[8] | CHEN Tielin, ZHOU Cheng, SHEN Zhujiang. Compression and shear test of structured clay[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 31-35. |
[9] | Du Jingcan, Lu Zhaozhen. A new method to determine the parameters of structural planes in rock masses the weighted displacement back analysis[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 74-77. |
[10] | Peng Guangzhong. Relation between the Mechanical Performance and Structural Plane Direction of Shale unedr uniaxial Compression[J]. Chinese Journal of Geotechnical Engineering, 1983, 5(2): 101-109. |