• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Changhong, WU Zhaoxin, WANG Kun, TANG Daofei, MA Chengtao. Stochastic mechanics-based Bayesian method for calibrating geotechnical parameters of Shanghai deep soft clay using CPTU data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 75-84. DOI: 10.11779/CJGE20211494
Citation: WANG Changhong, WU Zhaoxin, WANG Kun, TANG Daofei, MA Chengtao. Stochastic mechanics-based Bayesian method for calibrating geotechnical parameters of Shanghai deep soft clay using CPTU data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 75-84. DOI: 10.11779/CJGE20211494

Stochastic mechanics-based Bayesian method for calibrating geotechnical parameters of Shanghai deep soft clay using CPTU data

More Information
  • Received Date: December 09, 2021
  • Available Online: February 03, 2023
  • Published Date: December 09, 2021
  • The construction of urban deep underground engineering requires scientific calculation. The reasonable constitutive model and accurate geotechnical parameters are the most important support for soil mechanics. The modified Cam-clay (MCC) model is a simple one as its constants are simple and intuitive, and is widely used in geotechnical engineering. However, it's different to get precise parameters in deep soft clay by the indoor tests due to sampling disturbance, test error and other unavoidable factors. Considering the prior information, laboratory test data, and piezocone penetration test (CPTU) data, the key geotechnical parameters are treated as random variables, the stochastic mechanics-Bayesian method is proposed to calibrate the key geotechnical parameters of the deep soil layers, such as the critical state stress ratio, compression coefficient, rebound coefficient, and overconsolidation ratio. Based on the Suzhou River deep drainage and storage pipeline system in Shanghai and the foundation pit of Yunling, the deep soil layer ⑧ at the base plate is taken as the research object. Firstly, the mechanical conversion between the CPTU data (i.e., cone tip resistance, lateral friction stress and pore pressure) and the limit expansion pressure of cylindrical cavity is derived in the MCC model. The mechanical conversion for the CPTU data is verified by using the test data from Bothkennar geotechnical test site in Scotland. Secondly, the quadratic response surface without being crossed between the key geotechnical parameters and the CPTU data can be established by regression. The Markov-chain Monte Carlo (MCMC) sampling method will obtain the posterior distributions of the key geotechnical parameters. Finally, The numercial calculation for the foundation pit is carried out with the mean values of the posterior geotechnical parameters. The results show that the uncertainties of the geotechnical parameters are significantly reduced, and the results obtained by the numerical simulation of the foundation pit using the mean values of geotechnical parameters are closer to the monitoring values. It is proved that the stochastic mechanics- based Bayesian method is effective and efficient.
  • [1]
    DUAN W, CHANDRA C S S, CAI G J, et al. Empirical correlations of soil parameters based on piezocone penetration tests (CPTU) for Hong Kong-Zhuhai-Macau Bridge (HZMB) project[J]. Transportation Geotechnics, 2021, 30: 100605. doi: 10.1016/j.trgeo.2021.100605
    [2]
    LIU X Y, CAI G J, LIU L L, et al. Improved p-y curve models for large diameter and super-long cast-in-place piles using piezocone penetration test data[J]. Computers and Geotechnics, 2021, 130: 103911. doi: 10.1016/j.compgeo.2020.103911
    [3]
    SEDMAK V A. Expansion of cavities in infinite soil mass[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(3): 265-290. doi: 10.1061/JSFEAQ.0001740
    [4]
    李镜培, 李林, 孙德安, 等. 饱和软土地层静压沉桩阻力理论研究[J]. 岩土工程学报, 2015, 37(8): 1454-1461. doi: 10.11779/CJGE201508014

    LI Jingpei, LI Lin, SUN De'an, et al. Theoretical study on sinking resistance of jacked piles in saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1454-1461. (in Chinese) doi: 10.11779/CJGE201508014
    [5]
    郑金辉, 齐昌广, 王新泉, 等. 考虑砂土颗粒破碎的柱孔扩张问题弹塑性分析[J]. 岩土工程学报, 2019, 41(11): 2156-2164. doi: 10.11779/CJGE201911023

    ZHENG Jinhui, QI Changguang, WANG Xinquan, et al. Elasto-plastic analysis of cylindrical cavity expansion considering particle breakage of sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2156-2164. (in Chinese) doi: 10.11779/CJGE201911023
    [6]
    武孝天. 搅拌桩和管桩施工的挤土效应及其控制措施研究[D]. 上海: 上海交通大学, 2020.

    WU Xiaotian. Study on the Squeezing Effect and its Control Measures for Mixing Piles and Pipe Piles Construction[D]. Shanghai: Shanghai Jiao Tong University, 2020. (in Chinese)
    [7]
    ROBERTSON P K. Cone penetration test (CPT)-based soil behaviour type (SBT) classification system—an update[J]. Canadian Geotechnical Journal, 2016, 53(12): 1910-1927. doi: 10.1139/cgj-2016-0044
    [8]
    蔡国军, 刘松玉, 童立元, 等. 基于静力触探测试的国内外砂土液化判别方法[J]. 岩石力学与工程学报, 2008, 27(5): 1019-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200805021.htm

    CAI Guojun, LIU Songyu, TONG Liyuan, et al. Evaluation of liquefaction of sandy soils based on cone penetration test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 1019-1027. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200805021.htm
    [9]
    刘松玉, 郭易木, 张国柱, 等. 热传导CPT探头的研发与应用[J]. 岩土工程学报, 2020, 42(2): 354-361. doi: 10.11779/CJGE202002017

    LIU Songyu, GUO Yimu, ZHANG Guozhu, et al. Development and application of heat conduction CPT probe[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 354-361. (in Chinese) doi: 10.11779/CJGE202002017
    [10]
    蒋水华, 冯泽文, 刘贤, 等. 基于自适应贝叶斯更新方法的岩土参数概率分布推断[J]. 岩土力学, 2020, 41(1): 325-335. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001038.htm

    JIANG Shuihua, FENG Zewen, LIU Xian, et al. Inference of probability distributions of geotechnical parameters using adaptive Bayesian updating approach[J]. Rock and Soil Mechanics, 2020, 41(1): 325-335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001038.htm
    [11]
    郑栋, 黄劲松, 李典庆. 基于多源信息融合的路堤沉降预测方法[J]. 岩土力学, 2019, 40(2): 709-719, 727. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902034.htm

    ZHENG Dong, HUANG Jinsong, LI Dianqing. An approach for predicting embankment settlement by integrating multi-source information[J]. Rock and Soil Mechanics, 2019, 40(2): 709-719, 727. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902034.htm
    [12]
    WANG C H, OSORIO-MURILLO C A, ZHU H H, et al. Bayesian approach for calibrating transformation model from spatially varied CPT data to regular geotechnical parameter[J]. Computers and Geotechnics, 2017, 85: 262-273.
    [13]
    CHING J, PHOON K. Constructing site-specific multivariate probability distribution model by Bayesian machine learning[J]. ASCE Journal of Engineering Mechanics, 2019, 145(01): 04018126.
    [14]
    ROSCOE K H, BURLAND J B. On the Generalized Stress-strain Behavior of "Wet" Clay[C]// In Engineering plasticity. Cambridge: Cambridge University Press, 1968, 535-609.
    [15]
    CHEN S L, ABOUSLEIMAN Y. Exact undrained elasto-plastic solution for cylindrical cavity expansion in modified Cam Clay soil[J]. Geotechnique, 2012, 62(5): 447-456.
    [16]
    CHEN S L, ABOUSLEIMAN Y N. Exact drained solution for cylindrical cavity expansion in modified Cam-clay soil[J]. Géotechnique, 2013, 63(6): 510-517.
    [17]
    MO P Q, GAO X W, YANG W B, et al. A cavity expansion-based solution for interpretation of CPTu data in soils under partially drained conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(7): 1053-1076.
    [18]
    孔压静力触探技术规程: DB32/T 2977—2016[S]. 南京: 江苏省质量技术监督局, 2016.

    Technical Specification for Piezocone Penetration Test: DB32/T 2977—2016[S]. Nanjing: Jiangsu Provincial Bureau of Quality and Technical Supervision, 2016. (in Chinese)
    [19]
    HIGHT D W, BOND A J, LEGGE J D. Characterization of the Bothkennaar clay: an overview[J]. Géotechnique, 1992, 42(2): 303-347.
    [20]
    韦来生. 贝叶斯统计[M]. 北京: 高等教育出版社, 2016.

    WEI Laisheng. Bayesian Statistics[M]. Beijing: Higher Education Press, 2016. (in Chinese)
    [21]
    RUBIN Y, CHEN X Y, MURAKAMI H, et al. A Bayesian approach for inverse modeling, data assimilation, and conditional simulation of spatial random fields[J]. Water Resources Research, 2010, 46(10): 2009WR008799.
    [22]
    武朝军. 上海浅部土层沉积环境及其物理力学性质[D]. 上海: 上海交通大学, 2016.

    WU Zhaojun. Depositional Environment and Geotechnical Properties for the Upper Shanghai Clays[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
    [23]
    刘丽斌. 上海深层黏土的物理性质、超固结特性及本构模拟[D]. 上海: 上海交通大学, 2019.

    LIU Libin. Physical Properties, Over-Consolidation and Constitutive Modeling of Shanghai Deep Clays[D]. Shanghai: Shanghai Jiao Tong University, 2019. (in Chinese)
    [24]
    何为, 薛卫东, 唐斌. 优化试验设计方法及数据分析[M]. 北京: 化学工业出版社, 2012.

    HE Wei, XUE Weidong, TANG Bin. Optimization Design Method and Data Analysis[M]. Beijing: Chemical Industry Press, 2012. (in Chinese)
    [25]
    XU Z H, LI J, WENG Q P, et al. Analysis method of ultra-deep circular excavation and its application[J]. Construction Technology, 2022, 51(1): 13-20.
  • Related Articles

    [1]LI Hang, LI Zewen, LIAO Shaoming, LI Zhiyi, ZHONG Huawei. Field measurement of time-space distribution behaviors of environmental settlement of an ultra-deep excavation in Shanghai soft ground[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1595-1604. DOI: 10.11779/CJGE20220661
    [2]WANG Chang-hong, ZHU He-hua, XU Zi-chuan, LI Jian-gao. Ground surface settlement of shield tunnels considering spatial variability of multiple geotechnical parameters[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 270-277. DOI: 10.11779/CJGE201802007
    [3]YANG Xue-lin, CAO Guo-qiang, ZHOU Ping-huai. Design of supports for asymmetric extra-deep foundation pit of financial block project in Qianjiang CBD of Hangzhou[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk1): 17-24. DOI: 10.11779/CJGE2014S1003
    [4]LIU Tao, CHEN Yun-bin, LIU Hao. Case study of ultra-deep foundation pit by island and cofferdam construction in soft soils in coastal areas[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 773-778.
    [5]JIA Jin-qing, TU Bing-xiong. Application of flexible retaining method with prestressed anchors in ultra-deep excavations[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 530-535.
    [6]YANG Xue-lin. Application and development of new technology for support of deep excavations in coastal areas of Zhejiang[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 33-39.
    [7]MA Xianfeng, ZHANG Haihua, ZHU Weijie, ZHENG Yifeng, XU Qianwei. Centrifuge model tests on deformation of ultra-deep foundation pits in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1371-1377.
    [8]GONG Fengqiang, LI Xibing, DENG Jian. Probabilistic distribution of geotechnical parameters by using AHP prior distribution fusion method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1313-1318.
    [9]ZHAO Xihong, LI Bei, LI Kan, YANG Guoxiang. Study on theory and practice for specially big and deep excavation engineering——Deep excavation engineering in Puxi,Outer Ring Tunnel Project of Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 258-263.
    [10]LIU Chunyuan, YAN Shuwang. Characteristic of the random field of geotechnical parameters and linear prediction[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 588-591.
  • Cited by

    Periodical cited type(18)

    1. 江昭明,陈永贵,文子豪,付俊,周罕. pH值对MICP固化修复镉污染尾矿的影响研究. 岩土工程学报. 2025(01): 38-47 . 本站查看
    2. 陈永贵,江昭明,付俊,周罕,文子豪. 巴氏芽孢杆菌固化污染土的培养优化与矿化机制. 同济大学学报(自然科学版). 2025(04): 635-643 .
    3. 缪林昌,王恒星,孙潇昊,吴林玉,王呈呈,范广才,尹文华,王芳. 生物矿化技术固化风积沙试验与应用. 东南大学学报(自然科学版). 2023(01): 149-155 .
    4. 赵旭东,李伟群,尹文华,张易辰,繆林昌. 生物矿化技术在沙漠现场的大规模应用研究. 中阿科技论坛(中英文). 2022(02): 52-56 .
    5. 肖瑶,邓华锋,李建林,程雷,朱文羲. 海水环境下巴氏芽孢杆菌驯化及钙质砂固化效果研究. 岩土力学. 2022(02): 395-404 .
    6. 程雷,肖瑶,邓华锋,熊雨,彭萌,支永艳,李文华. 一株本源产脲酶细菌的分离培养及其在裂隙岩体加固中的应用. 岩土力学. 2022(S2): 307-314 .
    7. 肖海,胡欢,吕广柳,张文琪,朱志恩,向瑞,杨悦舒,夏振尧,旺杰. 微生物诱导碳酸钙沉淀影响因素研究进展分析. 三峡大学学报(自然科学版). 2022(06): 66-75 .
    8. 王恒星,缪林昌,孙潇昊,吴林玉. 微生物诱导固化技术研究进展. 湖南大学学报(自然科学版). 2021(01): 70-81 .
    9. 孙潇昊,缪林昌,童天志,吴林玉,王恒星. 微生物固化砂柱效果电阻率评价研究. 岩土工程学报. 2021(03): 579-585 . 本站查看
    10. 刘士雨,俞缙,曾伟龙,彭兴黔,蔡燕燕,涂兵雄. 微生物诱导碳酸钙沉淀修复三合土裂缝效果研究. 岩石力学与工程学报. 2020(01): 191-204 .
    11. 吴超传,郑俊杰,赖汉江,崔明娟,宋杨. 微生物固化砂土强度增长机理及影响因素试验研究. 土木与环境工程学报(中英文). 2020(01): 31-38 .
    12. 郑俊杰,吴超传,宋杨,崔明娟. MICP胶结钙质砂的强度试验及强度离散性研究. 哈尔滨工程大学学报. 2020(02): 250-256 .
    13. 张肖冲,靳新影,王静,陈韵,金多,马志山,刘建利,李靖宇. 不同生物土壤结皮微生物组跨膜转运蛋白基因多样性及差异. 微生物学通报. 2020(05): 1388-1403 .
    14. 孙潇昊,缪林昌,吴林玉,王呈呈,陈润发. 低温条件微生物MICP沉淀产率试验研究. 岩土工程学报. 2019(06): 1133-1138 . 本站查看
    15. 刘士雨,俞缙,韩亮,蔡燕燕,涂兵雄,周建烽. 三合土表面微生物诱导碳酸钙沉淀耐水性试验研究. 岩石力学与工程学报. 2019(08): 1718-1728 .
    16. 陈润发,缪林昌,孙潇昊,吴林玉,王呈呈. 微生物修复混凝土细小裂缝不同修复方法对比研究. 硅酸盐通报. 2019(10): 3054-3059 .
    17. 朱纪康,周杨,王殿龙,张家铭. 基于微生物诱导矿化的钙质砂加固影响因素. 地质科技情报. 2019(06): 206-211 .
    18. 孙潇昊,缪林昌,吴林玉,王呈呈,陈润发. 低温条件下微生物诱导固化对比研究. 岩土力学. 2018(S2): 224-230 .

    Other cited types(16)

Catalog

    Article views (289) PDF downloads (84) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return