• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Renpeng, LIU Muchun, MENG Fanyan, LI Zhongchao, WU Huaina, CHENG Hongzhan. Circumferential forces and deformations of shield tunnels due to lateral excavation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 24-32. DOI: 10.11779/CJGE20211420
Citation: CHEN Renpeng, LIU Muchun, MENG Fanyan, LI Zhongchao, WU Huaina, CHENG Hongzhan. Circumferential forces and deformations of shield tunnels due to lateral excavation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 24-32. DOI: 10.11779/CJGE20211420

Circumferential forces and deformations of shield tunnels due to lateral excavation

More Information
  • Received Date: November 29, 2021
  • Available Online: February 03, 2023
  • Published Date: November 29, 2021
  • To investigate its transverse forces and deformations subjected to lateral excavation, a theoretical approach for estimating the transverse forces of a shield tunnel considering the influences of deflections of retaining wall proposed. The calculated radial additional loads on the tunnel is compared with the results of three-dimensional finite element analysis of a case history and centrifuge modeling of excavation effects on a nearby existing tunnel in dry sand, which verifies the reliability of this approach. Based on the measured pile deflections, ground settlements, tunnel deformations and structural strains from this case history, the interaction mechanisms of the transverse forces, deformations and internal forces of the tunnel are analyzed. The results show that: (1) The initial radial loads on the tunnel are symmetrically distributed in a "gourd shape". The lateral excavation results in the decrease in the loads on the tunnel crown and right springline near excavation, while the loads on the tunnel invert and left springline away from excavation increase. This phenomenon is related to the relative values of the free-field ground displacements and measured tunnel displacements caused by excavation. The horizontal and vertical unbalanced loads are balanced by the shear force between neighboring rings caused by longitudinal differential deformations of the tunnel. (2) The elliptical deformations, clockwise rotations and bending moments of the tunnel all increase as the excavation proceeds. (3) The distribution of the circumferential bending moment of the tunnel is closely related to the relative position of the bolts. There are bolts near the right tunnel springline closer to the excavation at the investigated cross section, which bear more circumferential tension stress. In comparison, there are no bolts adjacent to the left tunnel away from the excavation, and thus the circumferential tension stress is mainly undertaken by the segments. Hence, the maximum circumferential bending moment of the tunnel at the investigated cross section occurs at the left springline.
  • [1]
    CHEN R P, MENG F Y, LI Z C, et al. Investigation of response of metro tunnels due to adjacent large excavation and protective measures in soft soils[J]. Tunnelling and Underground Space Technology, 2016, 58: 224-235. doi: 10.1016/j.tust.2016.06.002
    [2]
    SHI C H, CAO C Y, LEI M F, et al. Effects of lateral unloading on the mechanical and deformation performance of shield tunnel segment joints[J]. Tunnelling and Underground Space Technology, 2016, 51: 175-188. doi: 10.1016/j.tust.2015.10.033
    [3]
    张治国, 张孟喜, 王卫东. 基坑开挖对临近地铁隧道影响的两阶段分析方法[J]. 岩土力学, 2011, 32(7): 2085-2092. doi: 10.3969/j.issn.1000-7598.2011.07.028

    ZHANG Zhiguo, ZHANG Mengxi, WANG Weidong. Two-stage method for analyzing effects on adjacent metro tunnels due to foundation pit excavation[J]. Rock and Soil Mechanics, 2011, 32(7): 2085-2092. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.07.028
    [4]
    SAGASETA C. Analysis of undrained soil deformation due to ground loss[J]. Géotechnique, 1987, 37(3): 301-320. doi: 10.1680/geot.1987.37.3.301
    [5]
    CHENG H Z, CHEN R P, WU H N, et al. A simplified method for estimating the longitudinal and circumferential behaviors of the shield-driven tunnel adjacent to a braced excavation[J]. Computers and Geotechnics, 2020, 123: 103595. doi: 10.1016/j.compgeo.2020.103595
    [6]
    魏纲, 张鑫海, 林心蓓, 等. 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644, 654. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002035.htm

    WEI Gang, ZHANG Xinhai, LIN Xinbei, et al. Variations of transverse forces on nearby shield tunnel caused by foundation pits excavation[J]. Rock and Soil Mechanics, 2020, 41(2): 635-644, 654. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002035.htm
    [7]
    MENG F Y, CHEN R P, LIU S L, et al. Centrifuge modeling of ground and tunnel responses to nearby excavation in soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(3): 04020178. doi: 10.1061/(ASCE)GT.1943-5606.0002473
    [8]
    陈仁朋, ASHRAF A M, 孟凡衍. 基坑开挖对旁侧隧道影响及隔断墙作用离心模型试验研究[J]. 岩土工程学报, 2018, 40(增刊2): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2004.htm

    CHEN Renpeng, ASHRAF A M, MENG Fanyan. Three-dimensional centrifuge modeling of influence of nearby excavations on existing tunnels and effects of cut-off walls[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 6-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2004.htm
    [9]
    MENG F Y, CHEN R P, XU Y, et al. Centrifuge modeling of effectiveness of protective measures on existing tunnel subjected to nearby excavation[J]. Tunnelling and Underground Space Technology, 2021, 112: 103880. doi: 10.1016/j.tust.2021.103880
    [10]
    LIANG R Z, WU J, SUN L W, et al. Performances of adjacent metro structures due to zoned excavation of a large-scale basement in soft ground[J]. Tunnelling and Underground Space Technology, 2021, 117: 104123. doi: 10.1016/j.tust.2021.104123
    [11]
    GONG W P, WANG L, JUANG C H, et al. Robust geotechnical design of shield-driven tunnels[J]. Computers and Geotechnics, 2014, 56: 191-201. doi: 10.1016/j.compgeo.2013.12.006
    [12]
    VESIC A B. Beam on elastic subgrade and the Winkler's hypothesis[C]//Proceedings of the Fifth International Conference of Soil Mechanics and Foundation Engineering. Paris, 1961.
    [13]
    张陈蓉, 俞剑, 黄茂松. 软黏土中水平循环荷载作用下刚性短桩的py曲线分析[J]. 岩土工程学报, 2011, 33(增刊2): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S2015.htm

    ZHANG Chenrong, YU Jian, HUANG Maosong. Py curve analyses of rigid short piles subjected to lateral cyclic load in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 78-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S2015.htm
    [14]
    WU H N, SHEN S L, LIAO S M, et al. Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings[J]. Tunnelling and Underground Space Technology, 2015, 50: 317-323. doi: 10.1016/j.tust.2015.08.001
    [15]
    NG C W W, HONG Y, LIU G B, et al. Ground deformations and soil-structure interaction of a multi-propped excavation in Shanghai soft clays[J]. Géotechnique, 2012, 62(10): 907-921. doi: 10.1680/geot.10.P.072
    [16]
    LI Z F, LIN W A, YE J N, et al. Soil movement mechanism associated with arching effect in a multi-strutted excavation in soft clay[J]. Tunnelling and Underground Space Technology, 2021, 110: 103816. doi: 10.1016/j.tust.2021.103816
    [17]
    HUANG X, SCHWEIGER H F, HUANG H W. Influence of deep excavations on nearby existing tunnels[J]. International Journal of Geomechanics, 2013, 13(2): 170-180. doi: 10.1061/(ASCE)GM.1943-5622.0000188
  • Cited by

    Periodical cited type(15)

    1. 陆勇星. 工序能力指数下尺寸配合关系模糊可靠性研究. 内燃机与配件. 2025(10): 72-74 .
    2. 李志国,徐涛,刘永杰,赵立春,徐勇超,杨天鸿,郑小斌. 露天矿边坡稳定性的层次分析-模糊综合评价耦合分析. 中国地质灾害与防治学报. 2024(01): 116-123 .
    3. 孙昊,董清志,刘亚军,夏自卿. 考虑参数模糊性的头道河Ⅱ号滑坡可靠度分析. 土工基础. 2024(04): 660-663 .
    4. 熊毅,董舒,吴世鹏. 多层边坡可靠度计算随机响应面法及配点方法研究. 采矿技术. 2023(02): 92-98 .
    5. 张继旭,王林峰,黄晓明,谭国金. 双向地震动的随机性对倾倒式危岩模糊可靠度的影响. 工程科学与技术. 2023(06): 161-171 .
    6. 夏清,胡超群,宫琦. 某动车组柴田式密接车钩RAMS分析. 铁道技术标准(中英文). 2023(09): 23-32 .
    7. 仝霄金,丁刚,魏汝明,陈训龙. 双向地震荷载下崩塌堆积体盲数稳定可靠性分析. 地震工程学报. 2022(02): 258-263 .
    8. 张继旭,王林峰,夏万春. 基于模糊失效准则的危岩稳定可靠度计算. 防灾减灾工程学报. 2022(04): 695-704 .
    9. 郑捷宁,魏业文. 自然环境输电线及绝缘子覆冰状态多维度评估. 计算机仿真. 2021(01): 88-91+186 .
    10. 李文剑,潘卫东,李浩军,朱艾路. 地下停车场施工安全评价应用研究. 科技通报. 2021(05): 78-82+88 .
    11. 吴超瑜,陈文霞,潘健. 两种不同类型土坡的失效风险定量计算方法探讨. 广东水利水电. 2021(06): 1-5 .
    12. 钱龙,王刚,李梦瑶,李向鹏. 重力坝坝基多斜面抗滑稳定模糊体系可靠度研究. 水利与建筑工程学报. 2020(02): 117-122 .
    13. 王步云,倪鸣,郭晨,陈波. 短期光伏发电功率区间预测. 电子设计工程. 2019(13): 41-44+48 .
    14. 陶永霞,秦净净,于洋. 闸室抗滑稳定的模糊随机可靠度分析. 水力发电. 2019(11): 49-52 .
    15. 曾源林. 关于隶属函数的确定及应用探讨. 智富时代. 2018(10): 173 .

    Other cited types(15)

Catalog

    Article views (574) PDF downloads (190) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return