• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Lihua, YUE Yuwei, XIAO Henglin, LI Wentao, HAN Qipei, CAO Yu. Performance and influence mechanism of Cd-contaminated soil solidified by rice husk ash-cement[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 252-261. DOI: 10.11779/CJGE20211326
Citation: LI Lihua, YUE Yuwei, XIAO Henglin, LI Wentao, HAN Qipei, CAO Yu. Performance and influence mechanism of Cd-contaminated soil solidified by rice husk ash-cement[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 252-261. DOI: 10.11779/CJGE20211326

Performance and influence mechanism of Cd-contaminated soil solidified by rice husk ash-cement

More Information
  • Received Date: November 08, 2021
  • Available Online: February 23, 2023
  • In order to realize resource utilization of contaminated soil and rice husk ash, and solve the problem of high emission of cement-solidified materials, the rice husk ash (RHA)-cement is used as the solidified agent to treat heavy metal cadmium (Cd)-contaminated soil. The unconfined compressive strength (UCS), toxicity leaching, XRD and SEM tests are carried out on the solidified Cd-contaminated soil with different curing ages, curing agent types and Cd contents. The UCS, leaching concentration, failure modes, micro-morphology and mineral composition are used to analyze the macro-micro characteristics. The micro-mechanism of the RHA-cement solidified Cd-contaminated soil is revealed. The results demonstrate that the RHA can accelerate the hydration process of cement and improve the UCS of solidified soil, while adding 5%~10% RHA at low cement content has better effect. The strength of solidified soil increases first and then decreases with the increase of Cd content, and there is a critical value of 100~400 mg/kg. When the RHA is added into the soil, the brittle failure characteristics of the soil are weakened. The soil cracks and irregular failure surfaces increase under Cd pollution. The leaching concentration of solidified soil decreases with the increase of age, and reaches the standard limit when the Cd content is 100 mg/kg. The leaching concentration of solidified soil after partial replacement by the RHA cement is similar. The RHA-cement mainly uses hydration calcium aluminosilicate polymer gel (C-A-S-H) and ettringite (AFt) to support soil pores, and continuously agglomerates and cements to form a spatial network structure, and finally to form the skeleton structure and to adsorb Cd2+.
  • [1]
    环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBY201405004.htm

    Ministry of Environmental Protection, Ministry of Land and Resources. National bulletin of soil pollution survey China[J]. Environmental Protection Industry. 2014, 36(5): 10-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBY201405004.htm
    [2]
    杜延军, 金飞, 刘松玉, 等. 重金属工业污染场地固化/稳定处理研究进展[J]. 岩土力学, 2011, 32(1): 116-124. doi: 10.3969/j.issn.1000-7598.2011.01.019

    DU Yanjun, JIN Fei, LIU Songyu, et al. Review of stabilization/solidification technique for remediation of heavy metals contaminated lands[J]. Rock and Soil Mechanics, 2011, 32(1): 116-124. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.01.019
    [3]
    张亭亭, 李江山, 王平, 等. 磷酸镁水泥固化铅污染土的应力-应变特性研究[J]. 岩土力学, 2016, 37(增刊1): 215-225. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1028.htm

    ZHANG Tingting, LI Jiangshan, WANG Ping, et al. Experimental study of stress-strain properties of lead-contaminated soils treated by magnesium phosphate cement[J]. Rock and Soil Mechanics, 2016, 37(S1): 215-225. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1028.htm
    [4]
    LI W T, QIN J D, YI Y L. Carbonating MgO for treatment of Manganese-and cadmium-contaminated soils[J]. Chemosphere, 2021, 263: 128311. doi: 10.1016/j.chemosphere.2020.128311
    [5]
    李丽华, 余肖婷, 肖衡林, 等. 稻壳灰加筋土力学性能研究[J]. 岩土力学, 2020, 41(7): 2168-2178. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007003.htm

    LI Lihua, YU Xiaoting, XIAO Henglin, et al. Mechanical properties of reinforcement about rice husk ash mixed soil[J]. Rock and Soil Mechanics, 2020, 41(7): 2168-2178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007003.htm
    [6]
    MUHAMMAD A, MUNTOHAR A S. Uses of lime-rice husk ash and plastic fibers as mixtures-material in high-plasticity clayey subgrade: a preliminary study[J]. Semesta Teknika, 2007, 10(2): 145-154.
    [7]
    GUPTA D, KUMAR A. Performance evaluation of cement-stabilized pond ash-rice husk ash-clay mixture as a highway construction material[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(1): 159-169. doi: 10.1016/j.jrmge.2016.05.010
    [8]
    RAHGOZAR M A, SABERIAN M, LI J. Soil stabilization with non-conventional eco-friendly agricultural waste materials: an experimental study[J]. Transportation Geotechnics, 2018, 14: 52-60. doi: 10.1016/j.trgeo.2017.09.004
    [9]
    SANI J E, YOHANNA P, CHUKWUJAMA I A. Effect of rice husk ash admixed with treated sisal fibre on properties of lateritic soil as a road construction material[J]. Journal of King Saud University-Engineering Sciences, 2020, 32(1): 11-18. doi: 10.1016/j.jksues.2018.11.001
    [10]
    JONGPRADIST P, HOMTRAGOON W, SUKKARAK R, et al. Efficiency of rice husk ash as cementitious material in high-strength cement-admixed clay[J]. Advances in Civil Engineering, 2018, 2018: 1-11.
    [11]
    CHEN R F, CONGRESS S S C, CAI G J, et al. Sustainable utilization of biomass waste-rice husk ash as a new solidified material of soil in geotechnical engineering: a review[J]. Construction and Building Materials, 2021, 292: 123219. doi: 10.1016/j.conbuildmat.2021.123219
    [12]
    VIEIRA A P, TOLEDO F R D, TAVARES L M, et al. Effect of particle size, porous structure and content of rice husk ash on the hydration process and compressive strength evolution of concrete[J]. Construction and Building Materials, 2020, 236: 117553. doi: 10.1016/j.conbuildmat.2019.117553
    [13]
    YIN C Y, MAHMUD H B, SHAABAN M G. Stabilization/solidification of lead-contaminated soil using cement and rice husk ash[J]. Journal of Hazardous Materials, 2006, 137(3): 1758-1764. doi: 10.1016/j.jhazmat.2006.05.013
    [14]
    OLUWATUYI O E, OJURI O O. Environmental performance of lime-rice husk ash stabilized lateritic soil contaminated with lead or naphthalene[J]. Geotechnical and Geological Engineering, 2017, 35(6): 2947-2964. doi: 10.1007/s10706-017-0294-9
    [15]
    YANG W F, XUE Y J, WU S P, et al. Performance investigation and environmental application of basic oxygen furnace slag-Rice husk ash based composite cementitious materials[J]. Construction and Building Materials, 2016, 123: 493-500. doi: 10.1016/j.conbuildmat.2016.07.051
    [16]
    ZHOU M, WU S Y, LV Y, et al. Study on the stabilization/ solidification of lead-contaminated soil using alkali-activated cementing materials with rich-silicon materials[J]. Advanced Materials Research, 2017, 1142: 291-295. doi: 10.4028/www.scientific.net/AMR.1142.291
    [17]
    中华人民共和国环境保护部. 国家污染物环境健康风险名录—化学第一分册[M]. 北京: 中国环境科学出版社, 2009: 209-216.

    Ministry of Environmental Protection of the People's Republic of China. National Environmental Health Risk List of Pollutants[M]. Beijing: China Environmental Science Press, 2009: 209-216. (in Chinese)
    [18]
    李丽华, 万畅, 梅利芳, 等. 玻璃纤维水泥土无侧限抗压强度特性研究[J]. 武汉大学学报(工学版), 2018, 51(3): 252-256. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201803011.htm

    LI Lihua, WAN Chang, MEI Lifang, et al. Unconfined compression strength characteristics of glass fiber-reinforced cemented clay[J]. Engineering Journal of Wuhan University, 2018, 51(3): 252-256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201803011.htm
    [19]
    BASHA E A, HASHIM R, MAHMUD H B, et al. Stabilization of residual soil with rice husk ash and cement[J]. Construction and Building Materials, 2005, 19(6): 448-453. doi: 10.1016/j.conbuildmat.2004.08.001
    [20]
    魏明俐, 杜延军, 张帆. 水泥固化/稳定锌污染土的强度和变形特性试验研究[J]. 岩土力学, 2011, 32(增刊2): 306-312. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2051.htm

    WEI Mingli, DU Yanjun, ZHANG Fan. Fundamental properties of strength and deformation of cement solidified/stabilized zinc contaminated soils[J]. Rock and Soil Mechanics, 2011, 32(S2): 306-312. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2051.htm
    [21]
    VAN TUAN N, YE G, VAN BREUGEL K, et al. Hydration and microstructure of ultra high performance concrete incorporating rice husk ash[J]. Cement and Concrete Research, 2011, 41(11): 1104-1111.
    [22]
    佘跃心, 李锦柱, 曹茂柏, 等. 稻壳灰及掺稻壳灰混凝土应用研究进展述评[J]. 混凝土, 2016(6): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201606016.htm

    SHE Yuexin, LI Jinzhu, CAO Maobai, et al. Research of rice husk ash and application of rice husk ash in concrete[J]. Concrete, 2016(6): 57-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201606016.htm
    [23]
    陈蕾, 刘松玉, 杜延军, 等. 水泥固化重金属铅污染土的强度特性研究[J]. 岩土工程学报, 2010, 32(12): 1898-1903. http://cge.nhri.cn/cn/article/id/9133

    CHEN Lei, LIU Songyu, DU Yanjun, et al. Unconfined compressive strength properties of cement solidified/stabilized lead-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1898-1903. (in Chinese) http://cge.nhri.cn/cn/article/id/9133
    [24]
    KOGBARA R B, AL-TABBAA A, YI Y L, et al. Cement-fly ash stabilisation/solidification of contaminated soil: performance properties and initiation of operating envelopes[J]. Applied Geochemistry, 2013, 33: 64-75.
    [25]
    周长林. 水泥固化镉(Cd)污染土工程特性研究[D]. 重庆: 重庆大学, 2016: 40-43.

    ZHOU Changlin. Study on Cement Solidification of Cadmium(Cd) Contaminated Soil Engineering Characteristics[D]. Chongqing: Chongqing University, 2016: 40-43. (in Chinese)
    [26]
    US EPA T. EPA method 9100: Saturated hydraulic conductivity, saturated leachate conductivity, and intrinsic permeability[R]. Bristol: U S EPA T, 1986.
    [27]
    HILLS C D, POLLARD S J T. The influence of interference effects on the mechanical, microstructural and fixation characteristics of cement-solidified hazardous waste forms[J]. Journal of Hazardous Materials, 1997, 52(2/3): 171-191.
    [28]
    危险废弃物鉴别标准浸出毒性鉴别: GB/T5085.3—2007[S]. 北京: 中国环境科学出版社, 2007.

    Identification Standards for Hazardous Wastes-Identification for Extraction Toxicity: GB/T5085.3—2007[S]. Beijing: China Environmental Science Press, 2007. (in Chinese)
    [29]
    吴宗道. 钙矾石的显微形貌[J]. 中国建材科技, 1995, 4(4): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKJ199504001.htm

    WU Zongdao. Micromorphology of ettringite[J]. China Building Materials Science & Technology, 1995, 4(4): 9-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCKJ199504001.htm
    [30]
    RODRÍGUEZ DE S G, RODRÍGUEZ V I. A study on blended Portland cements containing residual rice husk ash and limestone filler[J]. Construction and Building Materials, 2018, 166: 873-888.
    [31]
    PHUMMIPHAN I, HORPIBULSUK S, RACHAN R, et al. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material[J]. Journal of Hazardous Materials, 2018, 341: 257-267.
    [32]
    周恒宇, 王修山, 胡星星, 等. 地聚合物固化淤泥强度增长影响因素及机制分析[J]. 岩土力学, 2021, 42(8): 2089-2098. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108005.htm

    ZHOU Hengyu, WANG Xiushan, HU Xingxing, et al. Influencing factors and mechanism analysis of strength development of geopolymer stabilized sludge[J]. Rock and Soil Mechanics, 2021, 42(8): 2089-2098. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108005.htm
  • Related Articles

    [1]Study on shear characteristics and microscopic mechanism of rock joint reinforced by MICP[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20241224
    [2]MA Qiang, LI Meng, ZHOU Xinlong, XI Lei, SUN Jun. Mechanical properties and microscopic mechanisms of enzyme-induced calcium carbonate precipitation (EICP)-reinforced clay mixtures with rubber particles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 72-76. DOI: 10.11779/CJGE2024S20001
    [3]JIN Jiaxu, QIN Zhifa, LIU Lei, WAN Yong, WANG Jing, ZUO Shenghao. Mechanical response and micro-mechanism of humus soil solidified by industrial solid waste-cement[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2410-2419. DOI: 10.11779/CJGE20230780
    [4]ZENG Zhaotian, LIN Mingyu, SUN De'an, CAO Shanshan, CHE Dongze, LIANG Zhen. Microscopic analysis of thermal conductivity of bentonite as buffer materials under alkaline-thermal conditions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1408-1417. DOI: 10.11779/CJGE20230473
    [5]ZENG Zhao-tian, FU Hui-li, LÜ Hai-bo, LIANG Zhen, YU Hai-hao. Thermal conduction characteristics and microcosmic mechanism of cement-cemented calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2330-2338. DOI: 10.11779/CJGE202112021
    [6]CHEN Bao, SHU Qing-fei, DENG Rong-sheng. Microscopic interpretation of time-dependent strength of clay considering plate-like particle interactions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 271-280. DOI: 10.11779/CJGE202102007
    [7]WANG Fei, XU Wang-qi. Strength and leaching performances of stabilized/solidified (S/S) and ground improved (GI) contaminated site soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1955-1961. DOI: 10.11779/CJGE202010022
    [8]HUANG Wei, LIU Qing-bing, XIANG Wei, LANG Lin-zhi, CUI De-shan, WANG Jing-e. Hydration mechanism and microscopic water retention model of clay at high suction range[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1268-1276. DOI: 10.11779/CJGE201807013
    [9]ZHANG Tao, CAI Guo-jun, LIU Song-yu, DUAN Wei-hong, WANG Peng-cheng. Experimental study on strength characteristics and micromechanism of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1082-1088. DOI: 10.11779/CJGE201706014
    [10]LI Jiang-shan, WANG Ping, ZHANG Ting-ting, LI Zhen-ze, XUE Qiang. Effect of freeze-thaw cycle on engineering properties and microstructure of stabilized/solidified lead contaminated soil treated by cement[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2043-2050. DOI: 10.11779/CJGE201611014
  • Cited by

    Periodical cited type(1)

    1. 张健,陈澄昊,梅世昂. 应力和渗流耦合作用下砂砾料渗透特性试验研究. 小水电. 2024(02): 26-31 .

    Other cited types(2)

Catalog

    Article views (397) PDF downloads (119) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return