Citation: | LI Lihua, YUE Yuwei, XIAO Henglin, LI Wentao, HAN Qipei, CAO Yu. Performance and influence mechanism of Cd-contaminated soil solidified by rice husk ash-cement[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 252-261. DOI: 10.11779/CJGE20211326 |
[1] |
环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBY201405004.htm
Ministry of Environmental Protection, Ministry of Land and Resources. National bulletin of soil pollution survey China[J]. Environmental Protection Industry. 2014, 36(5): 10-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBY201405004.htm
|
[2] |
杜延军, 金飞, 刘松玉, 等. 重金属工业污染场地固化/稳定处理研究进展[J]. 岩土力学, 2011, 32(1): 116-124. doi: 10.3969/j.issn.1000-7598.2011.01.019
DU Yanjun, JIN Fei, LIU Songyu, et al. Review of stabilization/solidification technique for remediation of heavy metals contaminated lands[J]. Rock and Soil Mechanics, 2011, 32(1): 116-124. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.01.019
|
[3] |
张亭亭, 李江山, 王平, 等. 磷酸镁水泥固化铅污染土的应力-应变特性研究[J]. 岩土力学, 2016, 37(增刊1): 215-225. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1028.htm
ZHANG Tingting, LI Jiangshan, WANG Ping, et al. Experimental study of stress-strain properties of lead-contaminated soils treated by magnesium phosphate cement[J]. Rock and Soil Mechanics, 2016, 37(S1): 215-225. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1028.htm
|
[4] |
LI W T, QIN J D, YI Y L. Carbonating MgO for treatment of Manganese-and cadmium-contaminated soils[J]. Chemosphere, 2021, 263: 128311. doi: 10.1016/j.chemosphere.2020.128311
|
[5] |
李丽华, 余肖婷, 肖衡林, 等. 稻壳灰加筋土力学性能研究[J]. 岩土力学, 2020, 41(7): 2168-2178. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007003.htm
LI Lihua, YU Xiaoting, XIAO Henglin, et al. Mechanical properties of reinforcement about rice husk ash mixed soil[J]. Rock and Soil Mechanics, 2020, 41(7): 2168-2178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007003.htm
|
[6] |
MUHAMMAD A, MUNTOHAR A S. Uses of lime-rice husk ash and plastic fibers as mixtures-material in high-plasticity clayey subgrade: a preliminary study[J]. Semesta Teknika, 2007, 10(2): 145-154.
|
[7] |
GUPTA D, KUMAR A. Performance evaluation of cement-stabilized pond ash-rice husk ash-clay mixture as a highway construction material[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(1): 159-169. doi: 10.1016/j.jrmge.2016.05.010
|
[8] |
RAHGOZAR M A, SABERIAN M, LI J. Soil stabilization with non-conventional eco-friendly agricultural waste materials: an experimental study[J]. Transportation Geotechnics, 2018, 14: 52-60. doi: 10.1016/j.trgeo.2017.09.004
|
[9] |
SANI J E, YOHANNA P, CHUKWUJAMA I A. Effect of rice husk ash admixed with treated sisal fibre on properties of lateritic soil as a road construction material[J]. Journal of King Saud University-Engineering Sciences, 2020, 32(1): 11-18. doi: 10.1016/j.jksues.2018.11.001
|
[10] |
JONGPRADIST P, HOMTRAGOON W, SUKKARAK R, et al. Efficiency of rice husk ash as cementitious material in high-strength cement-admixed clay[J]. Advances in Civil Engineering, 2018, 2018: 1-11.
|
[11] |
CHEN R F, CONGRESS S S C, CAI G J, et al. Sustainable utilization of biomass waste-rice husk ash as a new solidified material of soil in geotechnical engineering: a review[J]. Construction and Building Materials, 2021, 292: 123219. doi: 10.1016/j.conbuildmat.2021.123219
|
[12] |
VIEIRA A P, TOLEDO F R D, TAVARES L M, et al. Effect of particle size, porous structure and content of rice husk ash on the hydration process and compressive strength evolution of concrete[J]. Construction and Building Materials, 2020, 236: 117553. doi: 10.1016/j.conbuildmat.2019.117553
|
[13] |
YIN C Y, MAHMUD H B, SHAABAN M G. Stabilization/solidification of lead-contaminated soil using cement and rice husk ash[J]. Journal of Hazardous Materials, 2006, 137(3): 1758-1764. doi: 10.1016/j.jhazmat.2006.05.013
|
[14] |
OLUWATUYI O E, OJURI O O. Environmental performance of lime-rice husk ash stabilized lateritic soil contaminated with lead or naphthalene[J]. Geotechnical and Geological Engineering, 2017, 35(6): 2947-2964. doi: 10.1007/s10706-017-0294-9
|
[15] |
YANG W F, XUE Y J, WU S P, et al. Performance investigation and environmental application of basic oxygen furnace slag-Rice husk ash based composite cementitious materials[J]. Construction and Building Materials, 2016, 123: 493-500. doi: 10.1016/j.conbuildmat.2016.07.051
|
[16] |
ZHOU M, WU S Y, LV Y, et al. Study on the stabilization/ solidification of lead-contaminated soil using alkali-activated cementing materials with rich-silicon materials[J]. Advanced Materials Research, 2017, 1142: 291-295. doi: 10.4028/www.scientific.net/AMR.1142.291
|
[17] |
中华人民共和国环境保护部. 国家污染物环境健康风险名录—化学第一分册[M]. 北京: 中国环境科学出版社, 2009: 209-216.
Ministry of Environmental Protection of the People's Republic of China. National Environmental Health Risk List of Pollutants[M]. Beijing: China Environmental Science Press, 2009: 209-216. (in Chinese)
|
[18] |
李丽华, 万畅, 梅利芳, 等. 玻璃纤维水泥土无侧限抗压强度特性研究[J]. 武汉大学学报(工学版), 2018, 51(3): 252-256. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201803011.htm
LI Lihua, WAN Chang, MEI Lifang, et al. Unconfined compression strength characteristics of glass fiber-reinforced cemented clay[J]. Engineering Journal of Wuhan University, 2018, 51(3): 252-256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201803011.htm
|
[19] |
BASHA E A, HASHIM R, MAHMUD H B, et al. Stabilization of residual soil with rice husk ash and cement[J]. Construction and Building Materials, 2005, 19(6): 448-453. doi: 10.1016/j.conbuildmat.2004.08.001
|
[20] |
魏明俐, 杜延军, 张帆. 水泥固化/稳定锌污染土的强度和变形特性试验研究[J]. 岩土力学, 2011, 32(增刊2): 306-312. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2051.htm
WEI Mingli, DU Yanjun, ZHANG Fan. Fundamental properties of strength and deformation of cement solidified/stabilized zinc contaminated soils[J]. Rock and Soil Mechanics, 2011, 32(S2): 306-312. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2051.htm
|
[21] |
VAN TUAN N, YE G, VAN BREUGEL K, et al. Hydration and microstructure of ultra high performance concrete incorporating rice husk ash[J]. Cement and Concrete Research, 2011, 41(11): 1104-1111.
|
[22] |
佘跃心, 李锦柱, 曹茂柏, 等. 稻壳灰及掺稻壳灰混凝土应用研究进展述评[J]. 混凝土, 2016(6): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201606016.htm
SHE Yuexin, LI Jinzhu, CAO Maobai, et al. Research of rice husk ash and application of rice husk ash in concrete[J]. Concrete, 2016(6): 57-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201606016.htm
|
[23] |
陈蕾, 刘松玉, 杜延军, 等. 水泥固化重金属铅污染土的强度特性研究[J]. 岩土工程学报, 2010, 32(12): 1898-1903. http://cge.nhri.cn/cn/article/id/9133
CHEN Lei, LIU Songyu, DU Yanjun, et al. Unconfined compressive strength properties of cement solidified/stabilized lead-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1898-1903. (in Chinese) http://cge.nhri.cn/cn/article/id/9133
|
[24] |
KOGBARA R B, AL-TABBAA A, YI Y L, et al. Cement-fly ash stabilisation/solidification of contaminated soil: performance properties and initiation of operating envelopes[J]. Applied Geochemistry, 2013, 33: 64-75.
|
[25] |
周长林. 水泥固化镉(Cd)污染土工程特性研究[D]. 重庆: 重庆大学, 2016: 40-43.
ZHOU Changlin. Study on Cement Solidification of Cadmium(Cd) Contaminated Soil Engineering Characteristics[D]. Chongqing: Chongqing University, 2016: 40-43. (in Chinese)
|
[26] |
US EPA T. EPA method 9100: Saturated hydraulic conductivity, saturated leachate conductivity, and intrinsic permeability[R]. Bristol: U S EPA T, 1986.
|
[27] |
HILLS C D, POLLARD S J T. The influence of interference effects on the mechanical, microstructural and fixation characteristics of cement-solidified hazardous waste forms[J]. Journal of Hazardous Materials, 1997, 52(2/3): 171-191.
|
[28] |
危险废弃物鉴别标准浸出毒性鉴别: GB/T5085.3—2007[S]. 北京: 中国环境科学出版社, 2007.
Identification Standards for Hazardous Wastes-Identification for Extraction Toxicity: GB/T5085.3—2007[S]. Beijing: China Environmental Science Press, 2007. (in Chinese)
|
[29] |
吴宗道. 钙矾石的显微形貌[J]. 中国建材科技, 1995, 4(4): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKJ199504001.htm
WU Zongdao. Micromorphology of ettringite[J]. China Building Materials Science & Technology, 1995, 4(4): 9-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCKJ199504001.htm
|
[30] |
RODRÍGUEZ DE S G, RODRÍGUEZ V I. A study on blended Portland cements containing residual rice husk ash and limestone filler[J]. Construction and Building Materials, 2018, 166: 873-888.
|
[31] |
PHUMMIPHAN I, HORPIBULSUK S, RACHAN R, et al. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material[J]. Journal of Hazardous Materials, 2018, 341: 257-267.
|
[32] |
周恒宇, 王修山, 胡星星, 等. 地聚合物固化淤泥强度增长影响因素及机制分析[J]. 岩土力学, 2021, 42(8): 2089-2098. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108005.htm
ZHOU Hengyu, WANG Xiushan, HU Xingxing, et al. Influencing factors and mechanism analysis of strength development of geopolymer stabilized sludge[J]. Rock and Soil Mechanics, 2021, 42(8): 2089-2098. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108005.htm
|
[1] | Study on shear characteristics and microscopic mechanism of rock joint reinforced by MICP[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20241224 |
[2] | MA Qiang, LI Meng, ZHOU Xinlong, XI Lei, SUN Jun. Mechanical properties and microscopic mechanisms of enzyme-induced calcium carbonate precipitation (EICP)-reinforced clay mixtures with rubber particles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 72-76. DOI: 10.11779/CJGE2024S20001 |
[3] | JIN Jiaxu, QIN Zhifa, LIU Lei, WAN Yong, WANG Jing, ZUO Shenghao. Mechanical response and micro-mechanism of humus soil solidified by industrial solid waste-cement[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2410-2419. DOI: 10.11779/CJGE20230780 |
[4] | ZENG Zhaotian, LIN Mingyu, SUN De'an, CAO Shanshan, CHE Dongze, LIANG Zhen. Microscopic analysis of thermal conductivity of bentonite as buffer materials under alkaline-thermal conditions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1408-1417. DOI: 10.11779/CJGE20230473 |
[5] | ZENG Zhao-tian, FU Hui-li, LÜ Hai-bo, LIANG Zhen, YU Hai-hao. Thermal conduction characteristics and microcosmic mechanism of cement-cemented calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2330-2338. DOI: 10.11779/CJGE202112021 |
[6] | CHEN Bao, SHU Qing-fei, DENG Rong-sheng. Microscopic interpretation of time-dependent strength of clay considering plate-like particle interactions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 271-280. DOI: 10.11779/CJGE202102007 |
[7] | WANG Fei, XU Wang-qi. Strength and leaching performances of stabilized/solidified (S/S) and ground improved (GI) contaminated site soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1955-1961. DOI: 10.11779/CJGE202010022 |
[8] | HUANG Wei, LIU Qing-bing, XIANG Wei, LANG Lin-zhi, CUI De-shan, WANG Jing-e. Hydration mechanism and microscopic water retention model of clay at high suction range[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1268-1276. DOI: 10.11779/CJGE201807013 |
[9] | ZHANG Tao, CAI Guo-jun, LIU Song-yu, DUAN Wei-hong, WANG Peng-cheng. Experimental study on strength characteristics and micromechanism of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1082-1088. DOI: 10.11779/CJGE201706014 |
[10] | LI Jiang-shan, WANG Ping, ZHANG Ting-ting, LI Zhen-ze, XUE Qiang. Effect of freeze-thaw cycle on engineering properties and microstructure of stabilized/solidified lead contaminated soil treated by cement[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2043-2050. DOI: 10.11779/CJGE201611014 |
1. |
张健,陈澄昊,梅世昂. 应力和渗流耦合作用下砂砾料渗透特性试验研究. 小水电. 2024(02): 26-31 .
![]() |