• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Shuai, LIU Chuanzheng, GODA Katsuichiro. Applicability of smooth particle hydrodynamics method to large sliding deformation of saturated slopes under earthquake action[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 336-344. DOI: 10.11779/CJGE20211274
Citation: HUANG Shuai, LIU Chuanzheng, GODA Katsuichiro. Applicability of smooth particle hydrodynamics method to large sliding deformation of saturated slopes under earthquake action[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 336-344. DOI: 10.11779/CJGE20211274

Applicability of smooth particle hydrodynamics method to large sliding deformation of saturated slopes under earthquake action

More Information
  • Received Date: December 06, 2021
  • Available Online: February 23, 2023
  • The failure of a saturated slope under an intense earthquake ground motion will produce large sliding deformation, which is difficult to analyze using the finite element method. However, the smooth particle hydrodynamics method (SPH method) can deal with large deformation easily. In this study, to develop a new numerical method for calculating the seismic sliding large deformation of saturated slopes, the motion equation for the SPH method is improved by (1) introducing the Rayleigh damping into the smooth particle hydrodynamics and (2) adopting the effective stress constitutive model. To evaluate the effectiveness of the new method at soil element levels, the effective stress path and shear stress-strain hysteresis curve are obtained through the hollow cylindrical torsional shear tests on saturated soil samples, and are compared with the simulated results. The consistent results are obtained to verify the feasibility of the improved method. Finally, the seismic sliding behavior of saturated slopes under different SPH particle densities is analyzed by using the established numerical method and compared with that by the Newmark's sliding block method. It is found that the key parameter of the improved method is the particle density and that the shape of seismic sliding critical surface of saturated slopes determined by the improved SPH method is in good agreement with that of logarithmic spiral slip surface determined by the Newmark's method. Therefore, the improved SPH method can also be used to simulate a large sliding deformation process of saturated slopes under seismic actions.
  • [1]
    彭孔曙, 胡敏云.有限元法在临水边坡设计中的应用[J].科技通报, 2012, 28(9): 142-146. doi: 10.3969/j.issn.1001-7119.2012.09.033

    PENG Kongxu, , HU Minyun. Finite element method in the design of slope adjacent to water[J]. Bulletin of Science and Technology, 2012, 28(9): 142-146. (in Chinese) doi: 10.3969/j.issn.1001-7119.2012.09.033
    [2]
    ISHII Y, OTA K, KURAOKA S, et al. Evaluation of slope stability by finite element method using observed displacement of landslide[J]. Landslides, 2012, 9(3): 335-348. doi: 10.1007/s10346-011-0303-7
    [3]
    黄帅, 吕悦军.强震作用下动孔隙水压力对砂质边坡动力响应的影响[J].水运工程, 2015(10): 158-167. doi: 10.3969/j.issn.1002-4972.2015.10.028

    HUANG Shuai, LYU Yuejun. Influence of dynamic pore water pressure on dynamic response of sandy slope under strong earthquake[J]. Port & Waterway Engineering, 2015(10): 158-167. (in Chinese) doi: 10.3969/j.issn.1002-4972.2015.10.028
    [4]
    董士杰, 魏红卫.地震作用下土工合成材料加筋土边坡动力分析[J].铁道科学与工程学报, 2015, 12(4): 778-783. doi: 10.3969/j.issn.1672-7029.2015.04.010

    DONG Shijie, WEI Hongwei. Dynamic analysis of geosynthetic reinforced soil slope under seismic action[J]. Journal of Railway Science and Engineering, 2015, 12(4): 778-783. (in Chinese) doi: 10.3969/j.issn.1672-7029.2015.04.010
    [5]
    王飞, 吴红刚, 郭春香.碎石土路堑高边坡地震动力响应过程分析[J].中国地质灾害与防治学报, 2020, 31(1): 18-24. doi: 10.16031/j.cnki.issn.1003-8035.2020.01.03

    WANG Fei, WU Honggang, GUO Chunxiang. Dynamic response of high cut based a numerical simulation slope to earthquake[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(1): 18-24. (in Chinese) doi: 10.16031/j.cnki.issn.1003-8035.2020.01.03
    [6]
    YIN Y P, LI B, WANG W P. Dynamic analysis of the stabilized Wangjiayan landslide in the Wenchuan Ms 8.0 earthquake and aftershocks[J]. Landslides, 2015, 12(3): 537-547. doi: 10.1007/s10346-014-0497-6
    [7]
    WU H, ATANGANA NJOCK P G, CHEN J J, et al. Numerical simulation of spudcan-soil interaction using an improved smoothed particle hydrodynamics (SPH) method[J]. Marine Structures, 2019, 66: 213-226. doi: 10.1016/j.marstruc.2019.04.007
    [8]
    BUI H H, FUKAGAWA R, SAKO K, et al. Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH)[J]. Géotechnique, 2011, 61(7): 565-574. doi: 10.1680/geot.9.P.046
    [9]
    HUANG Y, ZHANG W J, XU Q, et al. Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics[J]. Landslides, 2012, 9(2): 275-283. doi: 10.1007/s10346-011-0285-5
    [10]
    唐宇峰, 施富强, 廖学燕.基于SPH的边坡稳定性计算中失稳判据研究[J].岩土工程学报, 2016, 38(5): 904-908. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16564.shtml

    TANG Yufeng, SHI Fuqiang, LIAO Xueyan. Failure criteria based on SPH slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 904-908. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16564.shtml
    [11]
    NONOYAMA H, MORIGUCHI S, SAWADA K, et al. Slope stability analysis using smoothed particle hydrodynamics (SPH) method[J]. Soils and Foundations, 2015, 55(2): 458-470. doi: 10.1016/j.sandf.2015.02.019
    [12]
    ZHANG Z Y, JIN X G, BI J. Development of an SPH-based method to simulate the progressive failure of cohesive soil slope[J]. Environmental Earth Sciences, 2019, 78(17): 537. doi: 10.1007/s12665-019-8507-6
    [13]
    张卫杰, 高玉峰, 黄雨, 等.水土耦合SPH数值模型的正则化修正及其应用[J].岩土工程学报, 2018, 40(2): 262-269. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17280.shtml

    ZHANG Weijie, GAO Yufeng, HUANG Yu, et al. Normalized correction of soil-water-coupled SPH model and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 262-269. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17280.shtml
    [14]
    张卫杰, 郑虎, 王占彬, 等.基于三维并行SPH模型的土体流滑特性研究[J].工程地质学报, 2018, 26(5): 1279-1284. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805021.htm

    ZHANG Weijie, ZHENG Hu, WANG Zhanbin, et al. Study on flowing behavior of soil based on three dimen-sional and parallelized sph model[J]. Journal of Engineering Geology, 2018, 26(5): 1279-1284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805021.htm
    [15]
    DAI Z L, HUANG Y, CHENG H L, et al. 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake[J]. Engineering Geology, 2014, 180: 21-33. doi: 10.1016/j.enggeo.2014.03.018
    [16]
    HUANG Y, DAI Z L. Large deformation and failure simulations for geo-disasters using smoothed particle hydrodynamics method[J]. Engineering Geology, 2014, 168: 86-97. doi: 10.1016/j.enggeo.2013.10.022
    [17]
    FULK D A. A numerical analysis of smoothed particle hydrodynamics[D]. Wright-Patterson AFB: Thesis Air Force Inst Tech, 1994.
    [18]
    LIU G R, LIU M B. Smoothed Particle Hydrodynamics-A Meshfree Particle Method[M]. Singapore: World Scientific Publishing Co Pte Ltd, 2003.
    [19]
    MAO Z, LIU G R, DONG X. A comprehensive study on the parameters setting in smoothed particle hydrodynamics (SPH) method applied to hydrodynamics problems. Computers and Geotechnics, 2017, 92: 77-95. doi: 10.1016/j.compgeo.2017.07.024
    [20]
    岩本哲也, 小野祐輔.弾性波伝播問題に対する粒子法の適用性[J].応用力学論文集, 2009, 12: 611-622.

    TETSUYA I, YUSUKE O. Applicability of meshfree particle method to elastic wave propagation analysis[J]. Journal of Applied Mechanics, 2009, 12: 611-622. (in Japanese)
    [21]
    CHEN J K, BERAUN J E, JIH C J. Completeness of corrective smoothed particle method for linear elastodynamics[J]. Computational Mechanics, 1999, 24(4): 273-285.
    [22]
    马红权, 张学莹. SPH的核近似和粒子近似[J].信息技术, 2012, 36(7): 170-171,175. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZJ201207049.htm

    MA Hongquan, ZHANG Xueying. Kernel approximation and particle approximation about SPH[J]. Information Technology, 2012, 36(7): 170-171,175. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDZJ201207049.htm
    [23]
    社本康広, 時松孝次, 有泉浩蔵.一次元有効応力解析の実地盤に対する適用性[J].日本建築学会構造系論文報告集, 1992, 433: 113-119.

    YDSUHIRO S, KOHJI T, KOUXO A. Applicability of a one-dimensional effective stress analysis to an existing soil deposit[J]. Journal of Structure Construction Engineering, 1992, 433: 113-119. (in Japanese)
    [24]
    JENNINGS P C. Periodic response of a general yielding structure[J]. Journal of the Engineering Mechanics Division, 1964, 90(2): 131-166.
    [25]
    GRAY J P, MONAGHAN J J, SWIFT R P. SPH elastic dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49): 6641-6662.
    [26]
    HA H, BUI K, SAKO R, et al. Numerical simulation of soil–water interaction using smoothed particle hydrodynamics (SPH) method[J]. Journal of Terramechanics, 2007, 44(5): 339-346.
    [27]
    冷艺, 栾茂田, 许成顺, 等.应力历史对饱和砂土力学性状影响的试验研究[J].岩土力学, 2009, 30(5): 1257-1263. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200905012.htm

    LENG Yi, LUAN Maotian, XU Chengshun, et al. Experimental study of effect of stress history on mechanical properties of saturated sand under complex stress conditions[J]. Rock and Soil Mechanics, 2009, 30(5): 1257-1263. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200905012.htm
    [28]
    黄帅, 宋波, 牛立超, 等.地震作用下动孔隙水压力对边坡永久位移影响的简便计算方法[J].建筑结构学报, 2014, 35(3): 215-221. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201403028.htm

    HUANG Shuai, SONG Bo, NIU Lichao, et al. Simple calculation method of permanent displacement of slope influenced by dynamic pore water pressure under earthquake[J]. Journal of Building Structures, 2014, 35(3): 215-221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201403028.htm
    [29]
    HUANG S, LYU Y J, SHA H J, et al. Seismic performance assessment of unsaturated soil slope in different groundwater levels[J]. Landslides, 2021, 18: 2813-2833.
    [30]
    霍沿东.基于极限分析上限方法的海底黏性土边坡地震稳定性评[D].大连: 大连理工大学, 2018.

    HUO Yandong. Evaluation of Seismic Stability of Submarine Clay Slopes Based on Upper Bound Approach of Limit Analysis[D]. Dalian: Dalian University of Technology, 2018. (in Chinese)
  • Cited by

    Periodical cited type(4)

    1. 宋威,王淑敏,高磊,赵岩. 高速铁路桥梁钻孔灌注桩承载特性影响因素研究. 高速铁路技术. 2025(01): 14-20+28 .
    2. 汪思源,张福友,梅国雄,肖良,巫志文. 岩溶区布袋灌注桩承载特性研究. 山东交通科技. 2025(01): 5-10 .
    3. 魏纲,王新,崔允亮,刁红国. 超长大直径变截面钢管复合桩竖向承载力算法. 地下空间与工程学报. 2022(03): 810-817 .
    4. 吴怡颖,马宏伟,姜晓强,童宇. 双盘挤扩桩的静承载特性试验研究. 四川建材. 2020(04): 61-63 .

    Other cited types(4)

Catalog

    Article views (313) PDF downloads (124) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return