• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
TAN Yun-zhi, HU Yan, ZHAN Shao-hu, LIU Wei, MING Hua-jun. Effects of aggregate sizes on hydro-mechanical performances of treated laterite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2323-2329. DOI: 10.11779/CJGE202112020
Citation: TAN Yun-zhi, HU Yan, ZHAN Shao-hu, LIU Wei, MING Hua-jun. Effects of aggregate sizes on hydro-mechanical performances of treated laterite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2323-2329. DOI: 10.11779/CJGE202112020

Effects of aggregate sizes on hydro-mechanical performances of treated laterite

More Information
  • Received Date: April 14, 2020
  • Available Online: November 30, 2022
  • The laterite is prone to aggregates due to the possession of high-content clay and moisture. It may be difficult to mix uniformly when lime and/or cement is added into the laterite, and further influences the treated effects. Four groups of laterite are selected, with the aggregate sizes of 5.0, 2.0, 1.0 and 0.5 mm, respectively. The mixing ratio of metakaolin-lime-laterite is 5∶5∶90 in dry weight. Then, the mixtures are moistened to the predetermined water content of 33.2% using distilled water. Finally, the hydro-mechanical performances and microstructure tests on the laterite specimens are carried out after compacted and cured to predicted periods. The results show that the linear shrinkage increases and the unconfined compressive strength decreases with the increasing of the aggregate size of the treated laterite. However, the inhibition of the shrinkage and the enhancement of the strength appear after adding metakaolin into the treated laterite with the same aggregate size. This may be ascribed to the following reasons, lime just adheres to the surface of the laterite aggregates, which only forms "bridging" linkage between the aggregates, and does not develop enveloping cementation. The metakaolin, containing plenty of amorphous silicon and aluminum oxides, can quickly capture the calcium ions in calcium hydroxide solution and form cementation hydratessilicon and calcium aluminate owing to having high pozzolanic activity. Meanwhile, the metakaolin also play a role of filling into the inter-pores of soils. Both of them improve the hydro-mechanical performances of the treated laterite.
  • [1]
    GIDIGASU M D. Laterite Soil Engineering-pedogenesis and Engineering principles[M]. Amsterdam: Elsevier, 1976.
    [2]
    王毓华. 红黏土定义论证[C]//第二届全国红土工程地质研讨会, 1991, 贵阳.

    WANG Yu-hua. Definition and demonstration of laterite[C]//The Second National Symposium on Laterite Engineering and Geology, 1991, Guiyang. (in Chinese)
    [3]
    谭罗荣, 孔令伟. 特殊岩土工程土质学[M]. 北京: 科学出版社, 2006.

    TAN Luo-rong, KONG Ling-wei. Problematicsoil Engineering Pedology[M]. Beijing: Science Press, 2006. (in Chinese)
    [4]
    谈云志. 压实红黏土的工程特征与湿热耦合效应研究[D]. 北京: 中国科学院研究生院, 2009.

    TAN Yun-zhi. Study on Engineering Characteristics and Moisture-heat Coupling Effect of Compacted Laterite Soil[D]. Beijing: Graduate College of Chinese Academy of Science, 2009. (in Chinese)
    [5]
    谈云志, 胡焱, 曹玲, 等. 偏高岭土协同石灰钝化红黏土水敏性的机制[J]. 岩土力学, 2020, 41(7): . https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007007.htm

    TAN Yun-zhi, HU Yan, CAO Ling, et al. Mechanism of metakaolin and lime modification of water sensitivity for compacted laterite[J]. Rock and Soil Mechanics, 2020, 41(7): . (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007007.htm
    [6]
    SHI B, MURAKAMI Y, WU Z S. Orientation of aggregates of fine-grained soil: quantification and application[J]. Engineering Geology, 1998, 50(1/2): 59-70.
    [7]
    蔡奕, 施斌, 刘志斌, 等. 团聚体大小对填筑土强度影响的试验研究[J]. 岩土工程学报, 2005, 27(12): 1482-1486. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200512021.htm

    CAI Yi, SHI Bin, LIU Zhi-bin, et al. Experimental study on effect of aggregate size on strength of filled soils[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1482-1486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200512021.htm
    [8]
    WANG Y J, CUI Y J, TANG A M, et al. Effects of aggregate size on the compressibility and air permeability of lime-treated fine-grained soil[J]. Engineering Geology, 2017, 228: 167-172. doi: 10.1016/j.enggeo.2017.08.005
    [9]
    谈云志, 郑爱, 吴翩, 等. 红黏土承载比的土团尺寸效应研究[J]. 岩土力学, 2013, 34(5): 1242-1246. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305002.htm

    TAN Yun-zhi, ZHENG Ai, WU Pian, et al. Effect of aggregate soil size on California bearing ratio values of laterite soil[J]. Rock and Soil Mechanics, 2013, 34(5): 1242-1246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305002.htm
    [10]
    TANG A M, VU M N, CUI Y J. Effects of the maximum soil aggregates size and cyclic wetting-drying on the stiffness of a lime-treated clayey soil[J]. Géotechnique, 2011, 61(5): 421-429. doi: 10.1680/geot.SIP11.005
    [11]
    公路路面基层施工技术规范:JTJ034—2000[S]. 2000.

    Technical Guidelines for Construction of Highway Roadbases: JTG 034—2000[S]. 2000. (in Chinese)
    [12]
    公路土工试验规程:JTG E40—2007[S]. 2007.

    Test Methods of Soils for Highway Engineering: JTG E40—2007[S]. 2007. (in Chinese)
    [13]
    AMBROISE J, MAXIMILIEN S, PERA J. Properties of Metakaolin blended cements[J]. Advanced Cement Based Materials, 1994, 1(4): 161-168. doi: 10.1016/1065-7355(94)90007-8
    [14]
    王伟鹏, 刘建立, 张佳宝, 等. 基于激光衍射的土壤粒径测定法的评价与校正[J]. 农业工程学报, 2014, 30(22): 163-169. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201422020.htm

    WANG Wei-peng, LIU Jian-li, ZHANG Jia-bao, et al. Evaluation and correction of measurement using diffraction method for soil particle size distribution[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(22): 163-169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201422020.htm
    [15]
    谈云志, 胡焱, 邓永锋, 等. 偏高岭土协同石灰抑制红黏土收缩的行为与机制[J]. 岩土力学, 2019, 40(11): 4213-4219. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911011.htm

    TAN Yun-zhi, HU Yan, DENG Yong-feng, et al. Behavior and mechanism of laterite shrinkage inhibition with lime and meta-Kaolin mixture[J]. Rock and Soil Mechanics, 2019, 40(11): 4213-4219. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911011.htm
    [16]
    孔令伟, 罗鸿禧, 袁建新. 黏土有效胶结特征的初步研究[J]. 岩土工程学报, 1995, 17(5): 42-47.

    KONG Ling-wei, LUO Hong-xi, YUAN Jian-xin. Preliminary study on the effective cementation characteristics of the red clay[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5): 42-47. (in Chinese)
    [17]
    张先伟, 孔令伟. 氧化铁胶体与黏土矿物的交互作用及其对黏土土性影响[J]. 岩土工程学报, 2014, 36(1): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401007.htm

    ZHANG Xian-wei, KONG Ling-wei. Interaction between iron oxide colloids and clay minerals and its effect on properties of caly[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 65-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401007.htm
    [18]
    OSULA D O A. Lime modification of problem laterite[J]. Engineering Geology, 1991, 30(2): 141-154.
    [19]
    INGLESOH . Soil Stabilization: Principles and Practices[M]. New York: Wiley, 1973.
    [20]
    杨志强, 郭见扬. 石灰处理土的物理力学性质及其微观机理的研究[J]. 岩土力学, 1991, 12(3): 11-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199103001.htm

    YANG Zhi-qiang, GUO Jian-yang. The Physio-mechanical properties and Micro-mechanism in Lime-soil system[J]. Rock and Soil Mechanics, 1991, 12(3): 11-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199103001.htm
    [21]
    MURRAY H H. Overview—clay mineral applications[J]. Applied Clay Science, 1991, 5(5/6): 379-395.
  • Related Articles

    [1]YANG Xu, CAI Guoqing, LIU Qianqian, LI Fengzeng, SHAN Yepeng. Experimental study on influences of wetting-drying cycles on microstructure and water-retention characteristics of clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 11-15. DOI: 10.11779/CJGE2024S20006
    [2]HUANG Chun-xia, HUANG Min, CAI Wei, CHEN Guo-xing, LIU Chang, ZHANG Yan-mei. Microstructure of silt with different clay contents[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 758-764. DOI: 10.11779/CJGE202004020
    [3]JIANG Ming-jing, LI Zhi-yuan, HUANG He-peng, LIU Jun. Experimental study on microstructure and mechanical properties of seabed soft soil from South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 17-20. DOI: 10.11779/CJGE2017S2005
    [4]ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444.
    [5]CHEN Yu-long. Microstructure of expansive soil from Yunnan Province[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 334-339.
    [6]Microstructural change of soft clay before and after one-dimensional compression creep[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1688-1694.
    [7]TANG Chaosheng, SHI Bin, WANG Baojun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 560-565.
    [8]ZHOU Cuiying, MU Chunmei. Analysis on effective radius of gravel piles reinforcement in soft soil foundations based on microstructure[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 755-758.
    [9]WANG Baojun, SHI Bin, LIU Zhibin, CAI Yi. Fractal study on microstructure of clayey soil by GIS[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 244-247.
    [10]Shi Bin. Quantitative  Assessment  of  Changes  of  Microstructure  for  Clayey  Soil  in  the  Process  of  Compaction[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 60-65.
  • Cited by

    Periodical cited type(13)

    1. 满轲,柳宗旭,商艳,宋志飞,刘晓丽,苏宝. 基于灰色关联分析下深度学习盾构姿态预测模型. 工程科学与技术. 2025(02): 203-213 .
    2. 满轲,曹子祥,刘晓丽,宋志飞,柳宗旭,刘汭琳,武立文. 地质突变条件下基于组合模型的围岩等级和TBM掘进参数预测. 河海大学学报(自然科学版). 2024(01): 55-62 .
    3. 邓志兴,谢康,李泰灃,苏谦,韩征,肖宪普. 基于机器学习的高铁边坡位移预测不确定性度量与应用. 中国铁道科学. 2024(01): 56-67 .
    4. 姜浩,郑亚强,金治军,马庆,董强,郑德焰,林峰,赵炳武. 基于ANN算法的钢结构安装工程质量状态评价. 化工管理. 2024(06): 102-109 .
    5. 郝晶晶,段鹏鑫,陈雨欣,段晓晨. 基于IGWO-SVR的地铁车站投资预测. 铁道学报. 2024(05): 179-188 .
    6. 张洁. 新疆超长隧洞TBM智能掘进施工方法研究. 黑龙江水利科技. 2024(08): 123-125 .
    7. 林平,李有鹏,谭彬. 基于Bootstrap方法和LSSVM模型的滑坡位移区间预测. 测绘与空间地理信息. 2024(09): 48-51+56 .
    8. 张琦,甘超,曹卫华. 大洋钻探过程钻速在线区间预测方法——以微型钻探船室内模拟实验为例. 钻探工程. 2024(05): 45-52 .
    9. 赵高峰,姜宝元,芮福鑫,马洪素,李洁勇,赵晓豹,龚秋明. 基于数值仿真的复杂岩体TBM掘进性能评估模型. 中南大学学报(自然科学版). 2023(03): 984-997 .
    10. 常建涛,乔子萱,孔宪光,杨胜康,罗才文. 多维非线性特征重构与融合的复杂产品工期预测方法. 机械工程学报. 2023(06): 294-308 .
    11. 禹海涛,朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析. 隧道与地下工程灾害防治. 2023(03): 19-26 .
    12. 彭继慎,郝茗,宋立业,李希桐. 基于TSSA-SVR算法的TBM掘进速度预测. 辽宁工程技术大学学报(自然科学版). 2023(05): 634-640 .
    13. 闫静,张雪英,李凤莲,陈桂军,黄丽霞. 结合栈式监督AE与可变加权ELM的回归预测模型. 计算机工程. 2022(08): 62-69+76 .

    Other cited types(11)

Catalog

    Article views PDF downloads Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return