• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAN Xin-jie, ZHAN Liang-tong, LIN Wei-an, CHEN Yun-min. Moisture distribution in sewage sludge based on soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2112-2118. DOI: 10.11779/CJGE202111018
Citation: ZHAN Xin-jie, ZHAN Liang-tong, LIN Wei-an, CHEN Yun-min. Moisture distribution in sewage sludge based on soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2112-2118. DOI: 10.11779/CJGE202111018

Moisture distribution in sewage sludge based on soil-water characteristic curve

More Information
  • Received Date: March 07, 2021
  • Available Online: December 01, 2022
  • The dewatering characteristic of sewage sludge is closely related to its moisture distribution. The researches on the moisture distribution characteristics in the sewage sludge are of important theoretical significance. Currently the measurement of moisture distribution curve of the sewage sludge mainly adopts the thermal gravimetry-differential thermal method, in which the amount of samples is only 50 mg, and the reproducibility of the tests is poor. A new method for measuring the moisture distribution in the sewage sludge based on the soil-water characteristic curve is proposed. Firstly based on the relationship between water potential and bond strength of moisture in the sewage sludge, the formula for bond strength of moisture and matric suction of the sewage sludge is derived. Accordingly the moisture distribution curve of the sewage sludge can be obtained by measuring its soil-water characteristic curve. The osmotic method and the relative humidity method are employed to obtain the moisture distribution curve of the sewage sludge. The results are compared with those based on the combined thermal gravimetry-differential thermal method. The proposed method for the moisture distribution in sewage sludge based on the soil-water characteristic curve has following features: the amount of samples is enough and representative, the change of structure of samples is small during measurement process, and the range of bond strength of measured moisture is wider.
  • [1]
    荀锐, 王伟, 乔玮. 水热改性污泥的水分布特征与脱水性能研究[J]. 环境科学, 2009, 30(3): 851-856. doi: 10.3321/j.issn:0250-3301.2009.03.038

    XUN Rui, WANG Wei, QIAO Wei. Water distribution and dewatering performance of the hydrothermal conditioned sludge[J]. Environmental Science, 2009, 30(3): 851-856. (in Chinese) doi: 10.3321/j.issn:0250-3301.2009.03.038
    [2]
    谢浩辉, 麻红磊, 池涌, 等. 污泥结合水测量方法和水分分布特性[J]. 浙江大学学报(工学版), 2012, 46(3): 503-508. doi: 10.3785/j.issn.1008-973X.2012.03.019

    XIE Hao-hui, MA Hong-lei, CHI Yong, et al. Bound water measurement methods and moisture distribution within sewage sludge[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(3): 503-508. (in Chinese) doi: 10.3785/j.issn.1008-973X.2012.03.019
    [3]
    DICK R I, DRAINVILLE M R. The role of water in sludge dewatering[J]. Water Environment Research, 1995, 67(2): 251. doi: 10.2175/106143095X131448
    [4]
    SMITH J K, VESILIND P A. Dilatometric measurement of bound water in wastewater sludge[J]. Water Research, 1995, 29(12): 2621-2626. doi: 10.1016/0043-1354(95)00144-A
    [5]
    SMOLLEN M. Categories of moisture content and dewatering characteristics of biological sludges[C]//Proceedings of the fourth World Filtration Congress, 1986, Ostend.
    [6]
    LEE D J. Measurement of bound water in waste activated sludge: use of the centrifugal settling method[J]. Journal of Chemical Technology & Biotechnology, 1994, 61(2): 139-144.
    [7]
    LEE D J, HSU Y H. Measurement of bound water in sludges: a comparative study[J]. Water Environment Research, 1995, 67(3): 310-317. doi: 10.2175/106143095X131529
    [8]
    CHEN G W, HUNG W T, CHANG I L, et al. Continuous classification of moisture content in waste activated sludges[J]. Journal of Environmental Engineering, 1997, 123(3): 253-258. doi: 10.1061/(ASCE)0733-9372(1997)123:3(253)
    [9]
    WU C C, HUANG C, LEE D J. Bound water content and water binding strength on sludge flocs[J]. Water Research, 1998, 32(3): 900-904. doi: 10.1016/S0043-1354(97)00234-0
    [10]
    CHU C P, LEE D J. Moisture distribution in sludge: effects of polymer conditioning[J]. Journal of Environmental Engineering, 1999, 125(4): 340-345. doi: 10.1061/(ASCE)0733-9372(1999)125:4(340)
    [11]
    VAXELAIRE J, CÉZAC P. Moisture distribution in activated sludges: a review[J]. Water Research, 2004, 38(9): 2215-2230. doi: 10.1016/j.watres.2004.02.021
    [12]
    谢浩辉. 污泥的结合水测量和热水解试验研究[D]. 杭州: 浙江大学, 2011.

    XIE Hao-hui. Research on Bound Water Measurement and Thermal Hydrolysis Test of Sewage Sludge[D]. Hangzhou: Zhejiang University, 2011. (in Chinese)
    [13]
    占鑫杰. 市政污泥的化学调理和真空预压联合作用固结机理及应用[D]. 杭州: 浙江大学, 2015.

    ZHAN Xin-jie. Study on the Consolidation Mechanism of Sewage Sludge under Combined Effect of Chemical Conditioning and Vacuum Preloading and its Application[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
    [14]
    耿增超, 戴伟. 土壤学[M]. 北京: 科学出版社, 2011.

    GENG Zeng-chao, DAI Wei. Soil Science[M]. Beijing: Science Press, 2011. (in Chinese)
    [15]
    HILHORST M A, DIRKSEN C, KAMPERS F W H, et al. Dielectric relaxation of bound water versus soil matric pressure[J]. Soil Science Society of America Journal, 2001, 65(2): 311-314. doi: 10.2136/sssaj2001.652311x
    [16]
    徐敩祖, 奥利奋特 J L, 泰斯 A R. 土水势、未冻水含量和温度[J]. 冰川冻土, 1985, 7(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198501000.htm

    XU Xiao-zu, OLIPHANT J L, TICE A R. Soil water potential, unfrozen water content and temperature[J]. Journal of Glaciology and Geocryology, 1985, 7(1): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198501000.htm
    [17]
    土工试验方法标准:GB/T 50123—2019[S]. 1999.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. 2019. (in Chinese)
    [18]
    城市污水处理厂污泥检验方法:CJ/T 221—2005[S]. 2005.

    Determination Method for Municipal Sludge in Wastewater Treatment Plant: CJ/T 221—2005[S]. 2005. (in Chinese)
    [19]
    DELAGE P, HOWAT M D, CUI Y J. The relationship between suction and swelling properties in a heavily compacted unsaturated clay[J]. Engineering Geology, 1998, 50(1/2): 31-48.
    [20]
    叶为民, 唐益群, 崔玉军. 室内吸力量测与上海软土土水特征[J]. 岩土工程学报, 2005, 27(3): 347-349. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC20050300L.htm

    YE Wei-min, TANG Yi-qun, CUI Yu-jun. Measurement of soil suction in laboratory and soil-water characteristics of Shanghai soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 347-349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC20050300L.htm
    [21]
    吴宏伟, 陈锐. 非饱和土试验中的先进吸力控制技术[J]. 岩土工程学报, 2006, 28(2): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200602000.htm

    WU Hong-wei, CHEN Rui. Advanced suction control technology in unsaturated soil test[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 123-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200602000.htm
  • Cited by

    Periodical cited type(22)

    1. 石延杰,王健,陈青山,张浦阳,任建宇. 海上风电倾斜螺旋群桩基础适用性分析. 港口航道与近海工程. 2024(01): 44-49 .
    2. 韦芳芳,包淑珉,邵盛,王永泉,孔纲强. 砂土中螺旋桩在斜拉荷载作用下的承载性能. 河海大学学报(自然科学版). 2024(02): 77-83 .
    3. 杨伟华,胡雪扬,张浦阳,甘毅,陈青山. 砂土中海上倾斜螺旋群桩基础承载特性研究. 南方能源建设. 2024(02): 82-92 .
    4. 胡伟,李砥柱,林志,冯世进,黄勇祥. 双锚片螺旋锚倾斜拉拔承载特性与承载力计算方法研究. 岩土力学. 2024(06): 1661-1674+1685 .
    5. 李建彪,邬叶飞,马思伟,孙昌利,邵康. 土体侧移作用下螺旋钢桩被动承载机理分析. 路基工程. 2024(05): 32-38 .
    6. 邬叶飞,高平,高丽峰,王华志,邵康. 砂土地层中多叶片螺旋钢桩压缩承载特性研究. 路基工程. 2024(05): 64-70 .
    7. 李幸周,杨振国,黄炎,余东起. 螺旋锚单锚基础在500 kV输电线路中的应用探析. 电力勘测设计. 2024(S2): 14-21 .
    8. 刘利民,王治伟,高明德,叶永明,阎石,张曰果. 水平单调加载下新型组合式螺旋锚复合地基基本力学性能. 地震工程与工程振动. 2023(02): 239-246 .
    9. 胡伟,王辉,姚琛,郝冬雪,史旦达. 砂土中水平矩形锚板竖向拉拔承载全域内三维统一力学模型与承载力计算方法研究. 岩土力学. 2023(06): 1811-1825 .
    10. 周为华,高明德,叶永明,杨立. 砂土地基增强套管螺旋锚组合基础试验研究. 建筑结构. 2023(S1): 2578-2582 .
    11. 高明德,庾思黎,叶永明,周为华. 大小螺旋锚组合型基础现场试验研究. 工业建筑. 2023(S1): 539-542 .
    12. 周震. 锚桩竖向荷载抗拔模型试验研究. 土工基础. 2022(01): 102-105 .
    13. 黄勇祥,丁士君,袁小超,翟国光,丁民涛. 青藏高原碎石土地基混凝土承台式螺旋锚基础原位载荷试验及承载机制分析. 建筑结构. 2022(04): 148-152+105 .
    14. 王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 .
    15. 胡伟,杨瑶,刘顺凯,林志,吴秋红,黄勇祥. 光伏支架螺旋桩斜向拉拔承载特性试验研究. 太阳能学报. 2022(12): 50-61 .
    16. 马建军,王满,刘家宇,聂梦强,王连华. 基于Winkler地基理论的横向受荷长桩非线性动力响应模型试验. 振动与冲击. 2021(01): 39-44+67 .
    17. 韦芳芳,华子伟,邵盛,于玮伟,朱俞. 砂土中倾斜螺旋桩水平承载性能有限元分析. 河北工程大学学报(自然科学版). 2021(01): 13-19 .
    18. 韦芳芳,邵盛,陈道申,徐庆鹏,邹本为,孔纲强. 黏土中倾斜螺旋桩的水平承载性能数值模拟及理论研究. 东南大学学报(自然科学版). 2021(03): 463-472 .
    19. 刘志鹏,孔纲强,文磊,王志华,秦红玉. 砂土地基中倾斜螺旋桩群桩上拔与水平承载特性模型试验. 岩土力学. 2021(07): 1944-1950 .
    20. 崔建国,田野,刘君巍,侯绪研,崔江磊,杨飞,王晶,关祥毅. 月壤临界尺度颗粒运移特性对钻采阻力影响研究. 岩土工程学报. 2021(09): 1715-1723 . 本站查看
    21. 林志,胡伟,赵璞,陈秋南,贺建清,陈洁,史旦达. 砂土中平板圆锚倾斜拉拔承载特性模型试验研究. 岩土力学. 2021(11): 3059-3068+3168 .
    22. 吴立晴,邵国栋,盛寒柯,王文明. 螺旋锚在软黏土中上拔承载力计算与数值模拟分析. 低温建筑技术. 2021(10): 120-124 .

    Other cited types(15)

Catalog

    Article views (212) PDF downloads (109) Cited by(37)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return