• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Guo-bo, WANG Yao, YU Hai-tao, ZHENG Nian-wen, SUN Fu-xue. Shaking table tests on seismic response of rocking frame structure considering foundation uplift[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2064-2074. DOI: 10.11779/CJGE202111013
Citation: WANG Guo-bo, WANG Yao, YU Hai-tao, ZHENG Nian-wen, SUN Fu-xue. Shaking table tests on seismic response of rocking frame structure considering foundation uplift[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2064-2074. DOI: 10.11779/CJGE202111013

Shaking table tests on seismic response of rocking frame structure considering foundation uplift

More Information
  • Received Date: April 22, 2021
  • Available Online: December 01, 2022
  • The separation of structural foundation and foundation soil, namely the foundation uplift, is inevitable in strong earthquakes, so the concept of rocking isolation is gradually proposed. Based on this idea, two types of models for frame structure are designed: the conventional foundation frame structure and the rocking frame structure. The influence effects of the two types of structures on the site soil and their own seismic responses are compared and analyzed based on the shaking table test data. The test results show that: (1) Due to the limited uplift amount and range of the structural foundation, the uplift effect has no significant influences on the spectral characteristics of the structure, but mainly affects the vertical acceleration response amplitude. (2) The seismic wave type has a significant influence on foundation uplift effect. The impulse seismic wave causes the largest uplift, but the least numbers. (3) Compared with that of the conventional frame structure, the influence of rocking frame structure on the site soil seismic response is more significant, and the high frequency components of its own response are more abundant. The research results have certain reference significance for exploring the seismic response law of rocking structure.
  • [1]
    翟长海, 刘文, 谢礼立. 城市抗震韧性评估研究进展[J]. 建筑结构学报, 2018, 39(9): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201809001.htm

    ZHAI Chang-hai, LIU Wen, XIE Li-li. Progress of research on city seismic resilience evaluation[J]. Journal of Building Structures, 2018, 39(9): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201809001.htm
    [2]
    吕西林, 武大洋, 周颖. 可恢复功能防震结构研究进展[J]. 建筑结构学报, 2019, 40(2): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201902001.htm

    LÜ Xi-lin, WU Da-yang, ZHOU Ying. State-of-the-art of earthquake resilient structures[J]. Journal of Building Structures, 2019, 40(2): 1-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201902001.htm
    [3]
    吕西林, 陈云, 毛苑君. 结构抗震设计的新概念—可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7): 941-947. doi: 10.3969/j.issn.0253-374x.2011.07.001

    LÜ Xi-lin, CHEN Yun, MAO Yuan-jun. New concept of structural seismic design: earthquake resilient structures[J]. Journal of Tongji University (Natural Science), 2011, 39(7): 941-947. (in Chinese) doi: 10.3969/j.issn.0253-374x.2011.07.001
    [4]
    周颖, 吕西林. 摇摆结构及自复位结构研究综述[J]. 建筑结构学报, 2011, 32(9): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201109002.htm

    ZHOU Ying, LÜ Xi-lin. State-of-the-art on rocking and self-centering structures[J]. Journal of Building Structures, 2011, 32(9): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201109002.htm
    [5]
    GAZETAS G, ANASTASOPOULOS I, GARINI E. Geotechnical design with apparent seismic safety factors well-bellow 1[J]. Soil Dynamics & Earthquake Engineering, 2014, 57(2): 37-45.
    [6]
    ANASTASOPOULOS I, GAZETAS G, LOLI M, et al. Soil failure can be used for seismic protection of structures[J]. Bulletin of Earthquake Engineering, 2010, 8(2): 309-326. doi: 10.1007/s10518-009-9145-2
    [7]
    YIM C S, CHOPRA A K, PENZIEN J. Rocking response of rigid blocks to earthquakes[J]. Earthquake Engineering & Structural Dynamics, 1980, 8(6): 565-587.
    [8]
    ACIKGOZ S, DEJONG M J. The interaction of elasticity and rocking in flexible structures allowed to uplift[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(15): 2177-2194.
    [9]
    LU Y, XIONG F, GE Q. Dynamic rocking response of a rigid planar block on a nonlinear hysteretic Winkler foundation[J]. Earthquake Engineering and Structural Dynamics, 2021, 50(10): 2754-2773. doi: 10.1002/eqe.3470
    [10]
    HASSAN A, HAMZEH S, MOHAMMAD K. Development of rocking isolation for response mitigation of elevated water tanks under seismic and wind hazards[J]. Shock and Vibration, 2020: 1-26.
    [11]
    郭展, 陈誉, 何康. 基底摇摆隔震桥墩振动台试验与数值模拟研究[J]. 建筑结构学报, 2020, 41(6): 38-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202006004.htm

    GUO Zhan, CHEN Yu, HE Kang. Shaking table test and numerical simulation study on base rocking isolation bridge piers[J]. Journal of Building Structures, 2020, 41(6): 38-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202006004.htm
    [12]
    VASSILIOU M F. Seismic response of a wobbling 3D frame[J]. Earthquake Engineering and Structural Dynamics, 2018, 47(5): 1212-1228. doi: 10.1002/eqe.3013
    [13]
    SEXTOS A G, MANOLIS G D, ATHANASIOU A, et al. Seismically induced uplift effects on nuclear power plants. Part 1: Containment building rocking spectra[J]. Nuclear Engineering and Design, 2017, 318: 276-287. doi: 10.1016/j.nucengdes.2016.12.035
    [14]
    赵明华. 土力学与基础工程[M]. 4版. 武汉: 武汉理工大学出版社, 2014.

    ZHAO Ming-hua. Soil Mechanics and Foundation Engineering[M]. 4th ed. Wuhan: Wuhan University of Technology Press, 2014. (in Chinese)
    [15]
    周颖, 吕西林,著. 建筑结构振动台模型试验方法与技术[M]. 2版. 北京: 科学出版社, 2019.

    ZHOU Yin, LÜ Xi-lin. Method and Technology for Shaking Table Model Test of Building Structures[M]. 2nd ed. Beijing: Science Press, 2019. (in Chinese)
    [16]
    郑年文. 考虑基础提离效应的结构非线性地震响应研究[D]. 武汉: 武汉理工大学, 2020.

    ZHENG Nian-wen. Research on Nonlinear Seismic Response of Structures Considering the Effect of Foundation Uplift[D]. Wuhan: Wuhan University of Technology, 2020. (in Chinese)
  • Related Articles

    [1]ZHOU Fengxi, GAO Zhigang, CAO Xiaolin, DAI Guoliang. Horizontal dynamic analysis of a single pile in saturated soft soils under Rayleigh wave action consideringe effects of vertical loads[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 166-170. DOI: 10.11779/CJGE2024S20030
    [2]ZHANG Zhiguo, CHEN Jie, ZHU Zhengguo, WEI Gang, WU Zhongteng, LU Zheng. Longitudinal deformations of existing discontinuous tunnels induced by shield tunneling based on Kerr foundation model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2238-2247. DOI: 10.11779/CJGE20221012
    [3]ZHANG Xiaodi, WANG Jinchang, YANG Zhongxuan, GONG Xiaonan, XU Rongqiao. Analytical solutions for laterally loaded step-tapered piles by state space method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1944-1624. DOI: 10.11779/CJGE20220384
    [4]FU Yanbin, WANG Fudao, LU Andian, ZHANG Xiaolong, HONG Chengyu, XIAO Hui. Analytical solution to longitudinal settlement of segments of subsea shield tunnels in fault fracture zones and its application[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1393-1401. DOI: 10.11779/CJGE20220507
    [5]ZHANG Ling, YUE Shao, ZHAO Ming-hua, PENG Wen-zhe. Behaviors of pile-column piers based on modified pasternak foundation model[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1817-1826. DOI: 10.11779/CJGE202210007
    [6]FENG Hao, YANG Yu-sheng, YU Hai-tao. Dynamic response of viscoelastic foundation beams under traveling wave effect[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 126-132. DOI: 10.11779/CJGE202001014
    [7]CHENG Kang, YU Fan, LIANG Rong-zhu, LIN Cun-gang, XIA Tang-dai, XU Ri-qing. Horizontal deformation of adjacent single pile under tunneling considering shearing effect of piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 178-182. DOI: 10.11779/CJGE2018S2036
    [8]LU Shi-jie, WEI Gang. Vibration prediction of immersed tube tunnels under vehicle loads based on Timoshenko beam theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1627-1634. DOI: 10.11779/CJGE201809008
    [9]ZHOU Xiaowen, NG C W W. Analytical solution for estimating surface settlements induced by multiple tunnel excavation[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1703-1710.
    [10]CHEN Yunmin, WANG Hongzhi. Analysis on lateral dynamic response of a pile with the method of reverberation ray matrix[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(3): 271-275.
  • Cited by

    Periodical cited type(3)

    1. 李飞龙,姜昌山,蔡国庆,余虔,韩进宝,张合青. 飞机滑行荷载对水泥混凝土道面及下穿通道的动力响应影响. 土木工程学报. 2024(S2): 80-87 .
    2. 黄之懿,游庆龙,马靖莲,田帅团,赵志,黄文旭. 飞机轮载作用下沥青道面荷载影响范围分析. 中国科技论文. 2023(08): 890-896+904 .
    3. 邓友生,姚志刚,邓明科,李明,李龙,肇慧玲. 温度-荷载作用下新旧混凝土道面接缝力学性能. 西安建筑科技大学学报(自然科学版). 2022(06): 899-905 .

    Other cited types(8)

Catalog

    Article views (233) PDF downloads (150) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return