• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
PENG Chun-hui, FENG Shi-jin, CHEN Hong-xin, LUO Chun-yong, LIANG Ai-min, DING Xiang-hong. Migration of organic contaminants in composite geomembrane cut-off wall considering groundwater seepage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2055-2063. DOI: 10.11779/CJGE202111012
Citation: PENG Chun-hui, FENG Shi-jin, CHEN Hong-xin, LUO Chun-yong, LIANG Ai-min, DING Xiang-hong. Migration of organic contaminants in composite geomembrane cut-off wall considering groundwater seepage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2055-2063. DOI: 10.11779/CJGE202111012

Migration of organic contaminants in composite geomembrane cut-off wall considering groundwater seepage

More Information
  • Received Date: April 05, 2021
  • Available Online: December 01, 2022
  • The composite geomembrane cut-off wall (CGCW) is one of the most effective technologies to prevent the horizontal migration of contaminants at present. Considering the characteristics of groundwater seepage in the outside aquifer, a numerical model for migration of the organic contaminants into the CGCW-aquifer system is established, and is solved using the finite element software COMSOL 5.3. The influences of parameters of the aquifer and CGCW are comprehensively investigated. The increase of the groundwater flow rate in the outside aquifer will accelerate the migration of contaminants and decrease the concentration of contaminants in the CGCW. In addition, when the seepage velocity is higher than 1×10-5 m/s and lower than 1×10-9 m/s, the models based on the boundary conditions of zero concentration and non-advection aquifer can be applied to the preliminary design of CGCW. Furthermore, the optimal location of the geomembrane in the CGCW is closely related to the type of contaminants and groundwater flow rate of the outsider aquifer, and the difference among the cumulative mass fluxes of the outlet face in the CGCW at different geomembrane locations can reach 10%~20%. The performance of the CGCW with EVOH geomembrane is significantly better than that of the CGCW with HDPE geomembrane.
  • [1]
    刘松玉, 詹良通, 胡黎明, 等. 环境岩土工程研究进展[J]. 土木工程学报, 2016, 49(3): 6-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202003010.htm

    LIU Song-yu, ZHAN Liang-tong, HU Li-ming, et al. Environmental geotechnics: state-of-the-art of theory, testing and application to practice[J]. China Civil Engineering Journal, 2016, 49(3): 6-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202003010.htm
    [2]
    钱学德, 朱伟, 徐浩青. 填埋场和污染场地防污屏障设计和施工(下册)[M]. 北京: 科学出版社, 2017.

    QIAN Xue-de, ZHU Wei, XU Hao-qing. Design and Construction of Protective Barriers for Waste Containments and Contaminated Sites[M]. Beijing: Science Press, 2017. (in Chinese)
    [3]
    ABDELAAL F B, ROWE R K, ISLAM M Z. Effect of leachate composition on the long-term performance of a HDPE geomembrane[J]. Geotextiles and Geomembranes, 2014, 42(4): 348-362. doi: 10.1016/j.geotexmem.2014.06.001
    [4]
    PARK M G, EDIL T B, BENSON C H. Modeling volatile organic compound transport in composite liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(6): 641-657. doi: 10.1061/(ASCE)GT.1943-5606.0000630
    [5]
    ZHAN L T, ZENG X, LI Y C, et al. Analytical solution for one-dimensional diffusion of organic pollutants in a geomembrane-bentonite composite barrier and parametric analyses[J]. Journal of Environmental Engineering, 2014, 140(1): 57-68. doi: 10.1061/(ASCE)EE.1943-7870.0000784
    [6]
    PENG C H, FENG S J, ZHENG Q T, et al. A two-dimensional analytical solution for organic contaminant diffusion through a composite geomembrane cut-off wall and an aquifer[J]. Computers and Geotechnics, 2020, 119: 103361. doi: 10.1016/j.compgeo.2019.103361
    [7]
    QIAN X D, ZHENG Z H, GUO Z, et al. Applications of geomembrane cutoff walls in remediation of contaminated sites[C]//Proceedings of the 8th International Congress on Environmental Geotechnics Volume 2, 2019, Hangzhou. doi: 10.1007/978-981-13-2224-2_41.
    [8]
    THOMAS R W, KOERNER R M. Advances in HDPE barrier walls[J]. Geotextiles and Geomembranes, 1996, 14(7/8): 393-408.
    [9]
    ROWE R K. Long-term performance of contaminant barrier systems[J]. Géotechniqu, 2005, 55(9): 631-678. doi: 10.1680/geot.2005.55.9.631
    [10]
    NEVILLE C J, ANDREWS C B. Containment criterion for contaminant isolation by cutoff walls[J]. Groundwater, 2006, 44(5): 682-686.
    [11]
    ACAR Y B, HAIDER L. Transport of low-concentration contaminants in saturated earthen barriers[J]. Journal of Geotechnical Engineering, 1990, 116(7): 1031-1052. doi: 10.1061/(ASCE)0733-9410(1990)116:7(1031)
    [12]
    XIE H J, WANG S Y, CHEN Y, et al. An analytical model for contaminant transport in cut-off wall and aquifer system[J]. Environmental Geotechnics, 2020, 7(7): 457-466. doi: 10.1680/jenge.18.00021
    [13]
    CHEN Z L, FENG S J, CHEN H X, et al. Analytical solution for transport of degradable contaminant in cut-off wall and aquifer[J]. Environmental Geotechnics, 2019: 1-13.
    [14]
    DING X H, FENG S J, ZHENG Q T, et al. A two-dimensional analytical model for organic contaminants transport in a transition layer-cutoff wall-aquifer system[J]. Computers and Geotechnics, 2020, 128: 103816. doi: 10.1016/j.compgeo.2020.103816
    [15]
    USEPA. Engineering bulletin: slurry walls[R]. Washinton: Environmental Protection Agency, 1992: 1-8.
    [16]
    SHACKELFORD C D, MOORE S M. Fickian diffusion of radionuclides for engineered containment barriers: diffusion coefficients, porosities, and complicating issues[J]. Engineering Geology, 2013, 152(1): 133-147. doi: 10.1016/j.enggeo.2012.10.014
    [17]
    ZHENG C, BENNETT G D. Applied Contaminant Transport Modeling[M]. New York: Wiley-Interscience, 2002.
    [18]
    GELHAR L W, WELTY C, REHFELDT K R. A critical review of data on field-scale dispersion in aquifers[J]. Water Resources Research, 1992, 28(7): 1955-1974. doi: 10.1029/92WR00607
    [19]
    SANGAM H P, ROWE R K. Migration of dilute aqueous organic pollutants through HDPE geomembranes[J]. Geotextiles and Geomembranes, 2001, 19(6): 329-357. doi: 10.1016/S0266-1144(01)00013-9
    [20]
    MCWATTERS R S, ROWE R K. Diffusive transport of VOCs through LLDPE and two coextruded geomembranes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(9): 1167-1177. doi: 10.1061/(ASCE)GT.1943-5606.0000345
    [21]
    GILLHAM R W, ROBIN M J L, DYTYNYSHYN D J, et al. Diffusion of nonreactive and reactive solutes through fine-grained barrier materials[J]. Canadian Geotechnical Journal, 1984, 21(3): 541-550. doi: 10.1139/t84-056
    [22]
    ROWE R K, BADV K. Chloride migration through clayey silt underlain by fine sand or silt[J]. Journal of Geotechnical Engineering, 1996, 122(1): 60-68. doi: 10.1061/(ASCE)0733-9410(1996)122:1(60)
    [23]
    YAWS C L. Handbook of transport property data, viscosity, thermal conductivity, and diffusion coefficients of liquids and gases. Library of physico-chemical property data[M]. Houston: Gulf Publishing, 1995.
    [24]
    DEVLIN J F, PARKER B L. Optimum hydraulic conductivity to limit contaminant flux through cutoff walls[J]. Ground Water, 1996, 34(4): 719-726. doi: 10.1111/j.1745-6584.1996.tb02060.x
    [25]
    EUN J, TINJUM J M, BENSON C H, et al. Comparison of volatile organic compound transport in composite liners with HDPE and ethylene-vinyl alcohol co-extruded geomembranes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(6): 4017010. doi: 10.1061/(ASCE)GT.1943-5606.0001484
    [26]
    MCWATTERS R S, ROWE R K. Barrier permeation properties of EVOH thin-film membranes under aqueous and non-aqueous conditions[J]. Geotextiles and Geomembranes, 2018, 46(4): 529-541. doi: 10.1016/j.geotexmem.2018.03.007
  • Related Articles

    [1]Analytical solution for dynamic interaction of end-bearing pile groups subjected to horizontal dynamic loads[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240837
    [2]ZHENG Chang-jie, CUI Yi-qin, DING Xuan-ming, LUAN Lu-bao. Analytical solution for dynamic interaction of end-bearing pile groups subjected to vertical dynamic loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2187-2195. DOI: 10.11779/CJGE202212005
    [3]FAN Hai-shan, ZHANG Jun-hui, ZHENG Jian-long. Analytical solution for dynamic response of asphalt pavement with subgrade modulus varying with depth[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1016-1026. DOI: 10.11779/CJGE202206005
    [4]YU Hai-tao, LI Xin-xi, LI Pan. Analytical solution for dynamic response of curved tunnels under travelling wave effect[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 69-76. DOI: 10.11779/CJGE202101008
    [5]WANG Teng, DU Bao-ping. Analytical solution for penetration response of steel catenary riser at touchdown zone on bilinear seabed[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1676-1683. DOI: 10.11779/CJGE201809014
    [6]GUO Xiao, XIE Kang-he, Lü Wen-xiao, DENG Yue-bao. Analytical solutions for consolidation by vertical drains with variation of well resistance with depth and time[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 996-1001. DOI: 10.11779/CJGE201506004
    [7]DONG Xin-ping, XIE Feng-zan. Analytical solution of segment joint model for segmented tunnel lining[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1870-1875.
    [8]LI Ning, XU Jian-cong. Analytical solutions for rainfall infiltration into homogenous infinite slopes[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2325-2330.
    [9]LIU Hanlong, DING Xuanming. Analytical solution of dynamic response of cast-in-situ concrete thin-wall pipe piles under transient concentrated load with low strain[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1611-1617.
    [10]LIANG Jianwen, ZHANG Hao, Vincent W. LEE. An analytical solution for dynamic stress concentration of underground cavities under incident plane P waves[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 815-819.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return