• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Yong-gan, LU Yang, LIU Si-hong, LI Zhuo, ZHANG Cheng-bin, ZHOU Yu-qi. Experimental study on tensile strength of frozen expansive soils based on Brazilian splitting tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2046-2054. DOI: 10.11779/CJGE202111011
Citation: ZHANG Yong-gan, LU Yang, LIU Si-hong, LI Zhuo, ZHANG Cheng-bin, ZHOU Yu-qi. Experimental study on tensile strength of frozen expansive soils based on Brazilian splitting tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2046-2054. DOI: 10.11779/CJGE202111011

Experimental study on tensile strength of frozen expansive soils based on Brazilian splitting tests

More Information
  • Received Date: March 29, 2021
  • Available Online: December 01, 2022
  • The tensile strength of frozen soils plays an important role in geotechnical problems involving tensile failure. In order to study the tensile properties of frozen expansive soils, a series of Brazilian splitting tests (BST) are used to study the effects of loading mode, height to diameter ratio of samples, loading rate, temperature, dry density and water content on the force-displacement curve and tensile strength. The test results show that the frozen expansive soils exhibit typical brittle failure characteristics under different temperatures, dry densities and water contents. The tensile strength of the frozen expansive soils increases with the decrease of temperature. When the dry density of the sample is the maximum, the relationship between its tensile strength and temperature is linear. However, for the samples with dry density less than the maximum, the relationship between the tensile strength and the temperature within the test temperature range is more suitable to be expressed by an exponential function. The relationship between the tensile strength and the temperature of the frozen expansive soils can be described by a linear relationship with different water contents, and the lower the water content, the greater the increment of tensile strength caused by the decrease of unit temperature. The tensile strength of the frozen expansive soils increases with the increasing dry density and water content, and there is a good linear relationship between the tensile strength and the dry density and water content under various temperature conditions.
  • [1]
    徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.

    XU Xue-zu, WANG Jia-cheng, ZHANG Li-xing. Permafrost Physics[M]. Beijing: Science Press, 2001. (in Chinese)
    [2]
    钮新强, 蔡耀军, 谢向荣. 膨胀土渠道处理技术[M]. 武汉: 长江出版社, 2016.

    NIU Xin-qiang, CAI Yao-jun, XIE Xiang-rong. Treatment technology of expansive soil channel[M]. Wuhan: Changjiang Publishing House, 2016. (in Chinese)
    [3]
    蔡正银, 朱洵, 黄英豪, 等. 湿干冻融耦合循环作用下膨胀土裂隙演化规律[J]. 岩土工程学报, 2019, 41(8): 1381-1389. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908002.htm

    CAI Zheng-yin, ZHU Xun, HUANG Ying-hao, et al. Evolution rules of fissures in expansive soils under cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1381-1389. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908002.htm
    [4]
    廖世文. 膨胀土与铁路工程[M]. 北京: 中国铁道出版社, 1984.

    LIAO Shi-wen. Expansive Soil and Railway Engineering[M]. Beijing: China Railway Publishing House, 1984. (in Chinese)
    [5]
    操子明, 马芹永. 含水率对冻结膨胀土单轴抗压强度影响的试验与分析[J]. 安徽理工大学学报(自然科学版), 2018, 38(4): 19-23. doi: 10.3969/j.issn.1672-1098.2018.04.004

    CAO Zi-ming, MA Qin-yong. Experiment and analysis of influence of water content on uniaxial compressive strength of frozen expansive soil[J]. Journal of Anhui University of Science and Technology(Natural Science), 2018, 38(4): 19-23. (in Chinese) doi: 10.3969/j.issn.1672-1098.2018.04.004
    [6]
    李兆宇, 张滨. 冻结膨胀土应力-应变关系试验研究[J]. 冰川冻土, 2014, 36(4): 902-906. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201404017.htm

    LI Zhao-yu, ZHANG Bin. Experimental study of stress-stain relationships of frozen expansive soil[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 902-906. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201404017.htm
    [7]
    LU Y, LIU S H, ALONSO E, et al. Volume changes and mechanical degradation of a compacted expansive soil under freeze-thaw cycles[J]. Cold Regions Science and Technology, 2019, 157: 206-214. doi: 10.1016/j.coldregions.2018.10.008
    [8]
    TANG L, CONG S Y, GENG L, et al. The effect of freeze-thaw cycling on the mechanical properties of expansive soils[J]. Cold Regions Science and Technology, 2018, 145: 197-207. doi: 10.1016/j.coldregions.2017.10.004
    [9]
    LI H D, TANG C S, CHENG Q, et al. Tensile strength of clayey soil and the strain analysis based on image processing techniques[J]. Engineering Geology, 2019, 253: 137-148. doi: 10.1016/j.enggeo.2019.03.017
    [10]
    TANG C S, PEI X J, WANG D Y, et al. Tensile strength of compacted clayey soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(4): 4014122. doi: 10.1061/(ASCE)GT.1943-5606.0001267
    [11]
    于长一, 刘爱民, 郭炳川, 等. 冻土不同拉伸试验强度差异性研究[J]. 岩土工程学报, 2019, 41(增刊2): 157-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2041.htm

    YU Chang-yi, LIU Ai-min, GUO Bing-chuan, et al. Different tensile tests on difference of strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 157-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2041.htm
    [12]
    沈忠言, 彭万巍, 刘永智. 冻结黄土抗拉强度的试验研究[J]. 冰川冻土, 1995, 17(4): 315-321. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT504.006.htm

    SHEN Zhong-yan, PENG Wan-wei, LIU Yong-zhi. Tensile strength of frozen saturated loess[J]. Journal of Glaciolgy and Geocryology, 1995, 17(4): 315-321. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT504.006.htm
    [13]
    彭万巍. 冻结黄土抗拉强度与应变率和温度的关系[J]. 岩土工程学报, 1998, 20(3): 31-33. doi: 10.3321/j.issn:1000-4548.1998.03.009

    PENG Wan-wei. Tensile strength of frozen loess varying with strain rate and temperature[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(3): 31-33. (in Chinese) doi: 10.3321/j.issn:1000-4548.1998.03.009
    [14]
    沈忠言, 刘永智, 彭万巍, 等. 径向压裂法在冻土抗拉强度测定中的应用[J]. 冰川冻土, 1994, 16(3): 224-231. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT403.004.htm

    SHEN Zhong-yan, LIU Yong-zhi, PENG Wan-wei, et al. Application of radial-splitting method to determining tensile strength of frozen soil[J]. Journal of Glaciology and Geocryology, 1994, 16(3): 224-231. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT403.004.htm
    [15]
    DENIZ AKIN I, LIKOS W J. Brazilian tensile strength testing of compacted clay[J]. Geotechnical Testing Journal, 2017, 40(4): 20160180.
    [16]
    LEE M, FOSSUM A, COSTIN L, et al. Frozen soil material testing and constitutive modeling[R]. Albuquerque: Office of Scientific and Technical Information (OSTI), 2002.
    [17]
    BRAGG R A, ANDERSLAND O B. Strain rate, temperature, and sample size effects on compression and tensile properties of frozen sand[J]. Engineering Geology, 1981, 18(1/2/3/4): 35-46.
    [18]
    ZHOU G Q, HU K, ZHAO X D, et al. Laboratory investigation on tensile strength characteristics of warm frozen soils[J]. Cold Regions Science and Technology, 2015, 113: 81-90.
    [19]
    沈忠言, 彭万巍, 刘永智. 径压法冻土抗拉强度测定中试样长度的影响[J]. 冰川冻土, 1994, 16(4): 327-332. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT404.005.htm

    SHEN Zhong-yan, PENG Wan-wei, LIU Yong-zhi. The effect of length of specimen on the results in radial splitting test[J]. Journal of Glaciolgy and Geocryology, 1994, 16(4): 327-332. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT404.005.htm
    [20]
    SHLOIDO G A. Determining the tensile strength of frozen ground[J]. Hydrotechnical Construction, 1968, 2(3): 238-240.
    [21]
    土工试验方法标准:GB/T50123—2019[S]. 2019.

    Standard for Soil Test Method: GB/T50123—2019[S]. 2019. (in Chinese)
    [22]
    LU Y, LIU S H, ZHANG Y G, et al. Freeze-thaw performance of a cement-treated expansive soil[J]. Cold Regions Science and Technology, 2020, 170: 102926.
    [23]
    LAI Y M, LIAO M K, HU K. A constitutive model of frozen saline sandy soil based on energy dissipation theory[J]. International Journal of Plasticity, 2016, 78: 84-113.
    [24]
    杨同, 王宝学, 孙林, 等. 垫条方式对岩石劈裂试验的影响分析[J]. 勘察科学技术, 2002(1): 3-7. https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX200201000.htm

    YANG Tong, WANG Bao-xue, SUN Lin, et al. Effects of various spacer methods for rock split tests[J]. Site Investigation Science and Technology, 2002(1): 3-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX200201000.htm
    [25]
    马巍, 王大雁. 冻土力学[M]. 北京: 科学出版社, 2014.

    MA Wei, WANG Da-yan. Mechanics of Frozen Soil[M]. Beijing: Science Press, 2014. (in Chinese)
    [26]
    ZHU, Y, CARBEE D L. Tensile strength of frozen silt[R]. Fairbanks: US Army Cold Regions Research and Engineering Laboratory, 1987, 87(15): 56-78.
    [27]
    AZMATCH T F, SEGO D C, ARENSON L U, et al. Tensile strength and stress-strain behaviour of Devon silt under frozen fringe conditions[J]. Cold Regions Science and Technology, 2011, 68(1/2): 85-90.
    [28]
    CHRIST M, KIM Y C. Experimental study on the physical-mechanical properties of frozen silt[J]. KSCE Journal of Civil Engineering, 2009, 13(5): 317-324.
    [29]
    赵景峰. 冻土抗拉强度与冻温及含水率关系的试验研究[J]. 地质与勘探, 2011, 47(6): 1158-1161. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201106026.htm

    ZHAO Jing-feng. An experimental study on the relationship between tensile strength and temperature and water ratio of frozen soil[J]. Geology and Exploration, 2011, 47(6): 1158-1161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201106026.htm
    [30]
    LIU T, HUANG Z, ZHENG Z G, et al. Artificial frozen soil bending test and bending property[J]. E3S Web of Conferences, 2020, 165: 3028.
  • Related Articles

    [1]LIU Zhixia, GUO Chengchao, ZHU Honghu, CAO Dingfeng, HUANG Rui, WANG Fuming, DONG Pu. Modified Côté-Konrad model for describing relationship between thermal conductivity and water content of coral calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2319-2326. DOI: 10.11779/CJGE20220985
    [2]JIAN Tao, KONG Ling-wei, BAI Wei, WANG Jun-tao, LIU Bing-heng. Experimental study on effects of water content on small-strain shear modulus of undisturbed loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 160-165. DOI: 10.11779/CJGE2022S1029
    [3]XU Jie, HU Hai-tao, ZHENG Zhi. Effects of compaction and water content on thermal conductivity of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 244-248. DOI: 10.11779/CJGE2020S1048
    [4]HE Zuo-yue, ZHANG Sheng, TENG Ji-dong, YAO Yang-ping, SHENG Dai-chao. Vapour transfer and its effects on water content in freezing soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1190-1197. DOI: 10.11779/CJGE201807004
    [5]OU Chuan-jing, WEI Chang-fu, YAN Rong-tao, LU You-qian, GUO Jing-lin. Experimental tests on relationship between suction and water content of remolded lateritic clay in Guangxi under high suction[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 32-36. DOI: 10.11779/CJGE2015S2007
    [6]CAI Zheng-yin, WU Zhi-qiang, HUANG Ying-hao, CAO Yong-yong, WEI Yan-bing. Influence of water and salt contents on strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1580-1586. DOI: 10.11779/CJGE201409002
    [7]ZHANG Peng-cheng, TANG Lian-sheng, DENG Zhong-wei, JIANG Li-qun. Quantitative relationship between wet suction and water content of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1453-1457.
    [8]DENG Jianhua, HUANG Xingchun, PENG jiebing, CHEN Bingxiang. Mechanical properties of Gypsum Breccia with different water contents[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1203-1207.
    [9]LIU Bin, NIE Dexin. Study on relation between strength parameter and water content of gouge[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2164-2167.
    [10]LIANG Zhigang, CHEN Yunmin, CHEN Yun. Measurement of water content of unsaturated soil by TDR technique[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 191-195.
  • Cited by

    Periodical cited type(5)

    1. 覃浩军,王利杰,蒲国庆,叶坤,周雄雄,王刚. 基于反演参数的高心墙堆石坝蓄水变形研究. 大坝与安全. 2025(01): 47-54 .
    2. 张毅,陈敬江. 基于动力计算的震区水库土石坝稳定性及安全评价研究. 水利科技与经济. 2023(06): 6-10+15 .
    3. 张宏洋,韩鹏举,马聪,陶元浩,李桐,丁泽霖,韩立炜,张先起,张宪雷. 基于改进粒子群算法的土石坝动力参数反演研究. 水利水电技术(中英文). 2023(06): 110-123 .
    4. 张宏洋,李桐,杨益格,丁泽霖,张先起,汪顺生. 基于模态分解和云粒子网络的大坝基岩地震动输入研究. 水利学报. 2023(06): 749-761 .
    5. 王茂华,迟世春,周雄雄. 基于地震记录和SSI方法的高土石坝模态识别. 岩土工程学报. 2021(07): 1279-1287 . 本站查看

    Other cited types(11)

Catalog

    Article views (339) PDF downloads (260) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return