Citation: | ZHANG Yong-gan, LU Yang, LIU Si-hong, LI Zhuo, ZHANG Cheng-bin, ZHOU Yu-qi. Experimental study on tensile strength of frozen expansive soils based on Brazilian splitting tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2046-2054. DOI: 10.11779/CJGE202111011 |
[1] |
徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.
XU Xue-zu, WANG Jia-cheng, ZHANG Li-xing. Permafrost Physics[M]. Beijing: Science Press, 2001. (in Chinese)
|
[2] |
钮新强, 蔡耀军, 谢向荣. 膨胀土渠道处理技术[M]. 武汉: 长江出版社, 2016.
NIU Xin-qiang, CAI Yao-jun, XIE Xiang-rong. Treatment technology of expansive soil channel[M]. Wuhan: Changjiang Publishing House, 2016. (in Chinese)
|
[3] |
蔡正银, 朱洵, 黄英豪, 等. 湿干冻融耦合循环作用下膨胀土裂隙演化规律[J]. 岩土工程学报, 2019, 41(8): 1381-1389. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908002.htm
CAI Zheng-yin, ZHU Xun, HUANG Ying-hao, et al. Evolution rules of fissures in expansive soils under cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1381-1389. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908002.htm
|
[4] |
廖世文. 膨胀土与铁路工程[M]. 北京: 中国铁道出版社, 1984.
LIAO Shi-wen. Expansive Soil and Railway Engineering[M]. Beijing: China Railway Publishing House, 1984. (in Chinese)
|
[5] |
操子明, 马芹永. 含水率对冻结膨胀土单轴抗压强度影响的试验与分析[J]. 安徽理工大学学报(自然科学版), 2018, 38(4): 19-23. doi: 10.3969/j.issn.1672-1098.2018.04.004
CAO Zi-ming, MA Qin-yong. Experiment and analysis of influence of water content on uniaxial compressive strength of frozen expansive soil[J]. Journal of Anhui University of Science and Technology(Natural Science), 2018, 38(4): 19-23. (in Chinese) doi: 10.3969/j.issn.1672-1098.2018.04.004
|
[6] |
李兆宇, 张滨. 冻结膨胀土应力-应变关系试验研究[J]. 冰川冻土, 2014, 36(4): 902-906. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201404017.htm
LI Zhao-yu, ZHANG Bin. Experimental study of stress-stain relationships of frozen expansive soil[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 902-906. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201404017.htm
|
[7] |
LU Y, LIU S H, ALONSO E, et al. Volume changes and mechanical degradation of a compacted expansive soil under freeze-thaw cycles[J]. Cold Regions Science and Technology, 2019, 157: 206-214. doi: 10.1016/j.coldregions.2018.10.008
|
[8] |
TANG L, CONG S Y, GENG L, et al. The effect of freeze-thaw cycling on the mechanical properties of expansive soils[J]. Cold Regions Science and Technology, 2018, 145: 197-207. doi: 10.1016/j.coldregions.2017.10.004
|
[9] |
LI H D, TANG C S, CHENG Q, et al. Tensile strength of clayey soil and the strain analysis based on image processing techniques[J]. Engineering Geology, 2019, 253: 137-148. doi: 10.1016/j.enggeo.2019.03.017
|
[10] |
TANG C S, PEI X J, WANG D Y, et al. Tensile strength of compacted clayey soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(4): 4014122. doi: 10.1061/(ASCE)GT.1943-5606.0001267
|
[11] |
于长一, 刘爱民, 郭炳川, 等. 冻土不同拉伸试验强度差异性研究[J]. 岩土工程学报, 2019, 41(增刊2): 157-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2041.htm
YU Chang-yi, LIU Ai-min, GUO Bing-chuan, et al. Different tensile tests on difference of strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 157-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2041.htm
|
[12] |
沈忠言, 彭万巍, 刘永智. 冻结黄土抗拉强度的试验研究[J]. 冰川冻土, 1995, 17(4): 315-321. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT504.006.htm
SHEN Zhong-yan, PENG Wan-wei, LIU Yong-zhi. Tensile strength of frozen saturated loess[J]. Journal of Glaciolgy and Geocryology, 1995, 17(4): 315-321. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT504.006.htm
|
[13] |
彭万巍. 冻结黄土抗拉强度与应变率和温度的关系[J]. 岩土工程学报, 1998, 20(3): 31-33. doi: 10.3321/j.issn:1000-4548.1998.03.009
PENG Wan-wei. Tensile strength of frozen loess varying with strain rate and temperature[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(3): 31-33. (in Chinese) doi: 10.3321/j.issn:1000-4548.1998.03.009
|
[14] |
沈忠言, 刘永智, 彭万巍, 等. 径向压裂法在冻土抗拉强度测定中的应用[J]. 冰川冻土, 1994, 16(3): 224-231. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT403.004.htm
SHEN Zhong-yan, LIU Yong-zhi, PENG Wan-wei, et al. Application of radial-splitting method to determining tensile strength of frozen soil[J]. Journal of Glaciology and Geocryology, 1994, 16(3): 224-231. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT403.004.htm
|
[15] |
DENIZ AKIN I, LIKOS W J. Brazilian tensile strength testing of compacted clay[J]. Geotechnical Testing Journal, 2017, 40(4): 20160180.
|
[16] |
LEE M, FOSSUM A, COSTIN L, et al. Frozen soil material testing and constitutive modeling[R]. Albuquerque: Office of Scientific and Technical Information (OSTI), 2002.
|
[17] |
BRAGG R A, ANDERSLAND O B. Strain rate, temperature, and sample size effects on compression and tensile properties of frozen sand[J]. Engineering Geology, 1981, 18(1/2/3/4): 35-46.
|
[18] |
ZHOU G Q, HU K, ZHAO X D, et al. Laboratory investigation on tensile strength characteristics of warm frozen soils[J]. Cold Regions Science and Technology, 2015, 113: 81-90.
|
[19] |
沈忠言, 彭万巍, 刘永智. 径压法冻土抗拉强度测定中试样长度的影响[J]. 冰川冻土, 1994, 16(4): 327-332. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT404.005.htm
SHEN Zhong-yan, PENG Wan-wei, LIU Yong-zhi. The effect of length of specimen on the results in radial splitting test[J]. Journal of Glaciolgy and Geocryology, 1994, 16(4): 327-332. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT404.005.htm
|
[20] |
SHLOIDO G A. Determining the tensile strength of frozen ground[J]. Hydrotechnical Construction, 1968, 2(3): 238-240.
|
[21] |
土工试验方法标准:GB/T50123—2019[S]. 2019.
Standard for Soil Test Method: GB/T50123—2019[S]. 2019. (in Chinese)
|
[22] |
LU Y, LIU S H, ZHANG Y G, et al. Freeze-thaw performance of a cement-treated expansive soil[J]. Cold Regions Science and Technology, 2020, 170: 102926.
|
[23] |
LAI Y M, LIAO M K, HU K. A constitutive model of frozen saline sandy soil based on energy dissipation theory[J]. International Journal of Plasticity, 2016, 78: 84-113.
|
[24] |
杨同, 王宝学, 孙林, 等. 垫条方式对岩石劈裂试验的影响分析[J]. 勘察科学技术, 2002(1): 3-7. https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX200201000.htm
YANG Tong, WANG Bao-xue, SUN Lin, et al. Effects of various spacer methods for rock split tests[J]. Site Investigation Science and Technology, 2002(1): 3-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX200201000.htm
|
[25] |
马巍, 王大雁. 冻土力学[M]. 北京: 科学出版社, 2014.
MA Wei, WANG Da-yan. Mechanics of Frozen Soil[M]. Beijing: Science Press, 2014. (in Chinese)
|
[26] |
ZHU, Y, CARBEE D L. Tensile strength of frozen silt[R]. Fairbanks: US Army Cold Regions Research and Engineering Laboratory, 1987, 87(15): 56-78.
|
[27] |
AZMATCH T F, SEGO D C, ARENSON L U, et al. Tensile strength and stress-strain behaviour of Devon silt under frozen fringe conditions[J]. Cold Regions Science and Technology, 2011, 68(1/2): 85-90.
|
[28] |
CHRIST M, KIM Y C. Experimental study on the physical-mechanical properties of frozen silt[J]. KSCE Journal of Civil Engineering, 2009, 13(5): 317-324.
|
[29] |
赵景峰. 冻土抗拉强度与冻温及含水率关系的试验研究[J]. 地质与勘探, 2011, 47(6): 1158-1161. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201106026.htm
ZHAO Jing-feng. An experimental study on the relationship between tensile strength and temperature and water ratio of frozen soil[J]. Geology and Exploration, 2011, 47(6): 1158-1161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201106026.htm
|
[30] |
LIU T, HUANG Z, ZHENG Z G, et al. Artificial frozen soil bending test and bending property[J]. E3S Web of Conferences, 2020, 165: 3028.
|
[1] | LIU Zhixia, GUO Chengchao, ZHU Honghu, CAO Dingfeng, HUANG Rui, WANG Fuming, DONG Pu. Modified Côté-Konrad model for describing relationship between thermal conductivity and water content of coral calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2319-2326. DOI: 10.11779/CJGE20220985 |
[2] | JIAN Tao, KONG Ling-wei, BAI Wei, WANG Jun-tao, LIU Bing-heng. Experimental study on effects of water content on small-strain shear modulus of undisturbed loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 160-165. DOI: 10.11779/CJGE2022S1029 |
[3] | XU Jie, HU Hai-tao, ZHENG Zhi. Effects of compaction and water content on thermal conductivity of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 244-248. DOI: 10.11779/CJGE2020S1048 |
[4] | HE Zuo-yue, ZHANG Sheng, TENG Ji-dong, YAO Yang-ping, SHENG Dai-chao. Vapour transfer and its effects on water content in freezing soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1190-1197. DOI: 10.11779/CJGE201807004 |
[5] | OU Chuan-jing, WEI Chang-fu, YAN Rong-tao, LU You-qian, GUO Jing-lin. Experimental tests on relationship between suction and water content of remolded lateritic clay in Guangxi under high suction[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 32-36. DOI: 10.11779/CJGE2015S2007 |
[6] | CAI Zheng-yin, WU Zhi-qiang, HUANG Ying-hao, CAO Yong-yong, WEI Yan-bing. Influence of water and salt contents on strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1580-1586. DOI: 10.11779/CJGE201409002 |
[7] | ZHANG Peng-cheng, TANG Lian-sheng, DENG Zhong-wei, JIANG Li-qun. Quantitative relationship between wet suction and water content of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1453-1457. |
[8] | DENG Jianhua, HUANG Xingchun, PENG jiebing, CHEN Bingxiang. Mechanical properties of Gypsum Breccia with different water contents[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1203-1207. |
[9] | LIU Bin, NIE Dexin. Study on relation between strength parameter and water content of gouge[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2164-2167. |
[10] | LIANG Zhigang, CHEN Yunmin, CHEN Yun. Measurement of water content of unsaturated soil by TDR technique[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 191-195. |
1. |
覃浩军,王利杰,蒲国庆,叶坤,周雄雄,王刚. 基于反演参数的高心墙堆石坝蓄水变形研究. 大坝与安全. 2025(01): 47-54 .
![]() | |
2. |
张毅,陈敬江. 基于动力计算的震区水库土石坝稳定性及安全评价研究. 水利科技与经济. 2023(06): 6-10+15 .
![]() | |
3. |
张宏洋,韩鹏举,马聪,陶元浩,李桐,丁泽霖,韩立炜,张先起,张宪雷. 基于改进粒子群算法的土石坝动力参数反演研究. 水利水电技术(中英文). 2023(06): 110-123 .
![]() | |
4. |
张宏洋,李桐,杨益格,丁泽霖,张先起,汪顺生. 基于模态分解和云粒子网络的大坝基岩地震动输入研究. 水利学报. 2023(06): 749-761 .
![]() | |
5. |
王茂华,迟世春,周雄雄. 基于地震记录和SSI方法的高土石坝模态识别. 岩土工程学报. 2021(07): 1279-1287 .
![]() |