• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Guo-xing, YUE Wen-ze, RUAN Bin, WANG Yan-zhen. Two-dimensional nonlinear seismic response analysis for seabed site effect assessment in Jintang Strait[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1967-1975. DOI: 10.11779/CJGE202111002
Citation: CHEN Guo-xing, YUE Wen-ze, RUAN Bin, WANG Yan-zhen. Two-dimensional nonlinear seismic response analysis for seabed site effect assessment in Jintang Strait[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1967-1975. DOI: 10.11779/CJGE202111002

Two-dimensional nonlinear seismic response analysis for seabed site effect assessment in Jintang Strait

More Information
  • Received Date: March 11, 2021
  • Available Online: December 01, 2022
  • Ensuring the safety of coastal and offshore projects subjected to strong earthquakes is a major engineering challenge. A two-dimensional nonuniform gridding and fine finite element model for the seabed cross-section site in Jintang Strait is established using the geological and geotechnical exploration data. According to the regional tectonic setting and historical seismicity around the undersea tunnel site, the downhole array bedrock records during two strong earthquakes are selected as the input bedrock motions, the spatial inhomogeneous variation, nonlinear and hysteretic behaviors of the seabed soil are considered, and the site responses of the seabed deep deposits under various earthquake levels are simulated using the parallel method. The significant amplification and filtering effects of seismic propagation for the low-frequency components below 1 Hz and the high-frequency components higher than 10 Hz of the bedrock motions are observed in the site responses. With the increase of bedrock motion levels, the values of acceleration transfer function of the seabed site decrease, and the predominant frequencies of the seabed site response tend to be lower. The peak acceleration amplification factors of the seabed surface are obviously lower than those of the general land sites. The 5% damping spectral acceleration spectra and the cumulative absolute velocity at the seabed surface are significantly affected by the bedrock motion characteristics and seabed local site conditions. The coupled horizontal and vertical bedrock motions exhibit a substantial negative influence on the design ground motion parameters of the seabed site, compared to those in the cases of only the horizontal bedrock shaking. The determination of the design ground motion parameters of the seabed site based on the current seismic code may be unsafe.
  • [1]
    DHAKAL Y P, AOI S, KUNUGI T, et al. Assessment of nonlinear site response at ocean bottom seismograph sites based on S-wave horizontal-to-vertical spectral ratios: a study at the Sagami Bay area K-NET sites in Japan[J]. Earth, Planets and Space, 2017, 69(1): 29. doi: 10.1186/s40623-017-0615-5
    [2]
    HU J J, TAN J Y, ZHAO J X. New GMPEs for the Sagami bay region in Japan for moderate magnitude events with emphasis on differences on site amplifications at the seafloor and land seismic stations of K-NET[J]. Bulletin of the Seismological Society of America, 2020, 110(5): 2577-2597. doi: 10.1785/0120190305
    [3]
    TAN J Y, HU J J. A prediction model for vertical-to-horizontal spectral ratios of ground motions on the seafloor for moderate magnitude events for the Sagami Bay region in Japan[J]. Journal of Seismology, 2021, 25(1): 181-199. doi: 10.1007/s10950-020-09932-5
    [4]
    ZHANG Q, ZHENG X Y. Offshore earthquake ground motions: Distinct features and influence on the seismic design of marine structures[J]. Marine Structures, 2019, 65: 291-307. doi: 10.1016/j.marstruc.2019.02.003
    [5]
    陈国兴, 陈磊, 景立平, 等. 地铁地下结构抗震分析并行计算显式与隐式算法比较[J]. 铁道学报, 2011, 33(11): 111-118. doi: 10.3969/j.issn.1001-8360.2011.11.019

    CHEN Guo-xing, CHEN Lei, JING Li-ping, et al. Comparison of implicit and explicit finite element methods with parallel computing for seismic response analysis of metro underground structures[J]. Journal of the China Railway Society, 2011, 33(11): 111-118. (in Chinese) doi: 10.3969/j.issn.1001-8360.2011.11.019
    [6]
    CHEN G X, JIN D D, ZHU J, et al. Nonlinear analysis on seismic site response of Fuzhou basin, China[J]. Bulletin of the Seismological Society of America, 2015, 105(2A): 928-949. doi: 10.1785/0120140085
    [7]
    RUAN B, ZHAO K, WANG S Y, et al. Numerical modeling of seismic site effects in a shallow estuarine bay (Suai Bay, Shantou, China)[J]. Engineering Geology, 2019, 260: 105233. doi: 10.1016/j.enggeo.2019.105233
    [8]
    TRIFUNAC M D. Nonlinear soil response as a natural passive isolation mechanism. Paper II. The 1933, Long Beach, California earthquake[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(7): 549-562. doi: 10.1016/S0267-7261(03)00071-X
    [9]
    陈国兴, 李磊, 丁杰发, 等. 巨厚沉积土夹火山岩场地非线性地震反应特性[J]. 岩土力学, 2020, 41(9): 3056-3065, 3076. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009024.htm

    CHEN Guo-xing, LI Lei, DING Jie-fa, et al. Nonlinear seismic response characteristics of extremely deep deposit site with volcanic hard rock interlayers[J]. Rock and Soil Mechanics, 2020, 41(9): 3056-3065, 3076. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009024.htm
    [10]
    CHEN G X, RUAN B, ZHAO K, et al. Nonlinear response characteristics of undersea shield tunnel subjected to strong earthquake motions[J]. Journal of Earthquake Engineering, 2020, 24(3): 351-380. doi: 10.1080/13632469.2018.1453416
    [11]
    NAKAMURA . What is the Nakamura method?[J]. Seismological Research Letters, 2019, 90(4): 1437-1443. doi: 10.1785/0220180376.
    [12]
    刘晶波, 谷音, 杜义欣. 一致黏弹性人工边界及黏弹性边界单元[J]. 岩土工程学报, 2006, 28(9): 1070-1075. doi: 10.3321/j.issn:1000-4548.2006.09.004

    LIU Jing-bo, GU Yin, DU Yi-xin. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1070-1075. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.09.004
    [13]
    章小龙, 李小军, 陈国兴, 等. 黏弹性人工边界等效荷载计算的改进方法[J]. 力学学报, 2016, 48(5): 1126-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201605012.htm

    ZHANG Xiao-long, LI Xiao-jun, CHEN Guo-xing, et al. An improved method of the calculation of equivalent nodal forces in viscous-elastic artificial boundary[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1126-1135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201605012.htm
    [14]
    陈国兴, 杨文保, 岳文泽, 等. 金塘海峡海洋土动剪切模量与阻尼比特性研究[J]. 防灾减灾工程学报, 2020, 40(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202001001.htm

    CHEN Guo-xing, YANG Wen-bao, YUE Wen-ze, et al. Experimental studies on the dynamic shear modulus and damping ratio characteristics of marine soils in the Jintang strait[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(1): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202001001.htm
    [15]
    CHEN G X, WANG Y Z, ZHAO D F, et al. A new effective stress method for nonlinear site response analyses[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(6): 1595-1611.
    [16]
    WANG J P, YUN X, KUO-CHEN H, et al. CAV site-effect assessment: a case study of Taipei Basin[J]. Soil Dynamics and Earthquake Engineering, 2018, 108: 142-149. doi: 10.1016/j.soildyn.2018.02.028
    [17]
    BRAY J D, MACEDO J. 6th Ishihara lecture: Simplified procedure for estimating liquefaction-induced building settlement[J]. Soil Dynamics and Earthquake Engineering, 2017, 102: 215-231. doi: 10.1016/j.soildyn.2017.08.026
    [18]
    MONTGOMERY J, BOULANGER R W. Effects of spatial variability on liquefaction-induced settlement and lateral spreading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(1): 4016086. doi: 10.1061/(ASCE)GT.1943-5606.0001584
    [19]
    陈国兴, 丁杰发, 方怡, 等. 场地类别分类方案研究[J]. 岩土力学, 2020, 41(11): 3509-3522, 3582. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011002.htm

    CHEN Guo-xing, DING Jie-fa, FANG Yi, et al. Investigation of seismic site classification scheme[J]. Rock and Soil Mechanics, 2020, 41(11): 3509-3522, 3582. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011002.htm
  • Cited by

    Periodical cited type(15)

    1. 韩炳鑫,尹超,袁维,王文,王伟. 基于改进水热耦合模型的冻土边坡稳定性数值模拟. 冰川冻土. 2025(02): 417-429 .
    2. 唐少容,柯德秀,杨强,高天源. 单向冻结下渠基土的锅盖效应试验研究. 人民黄河. 2024(03): 109-113+120 .
    3. 周凤玺,杨仕钊,张留俊,马强. 隔水透气隔断层对寒旱区盐渍土水盐迁移及变形特性的影响. 冰川冻土. 2024(04): 1225-1233 .
    4. 王情玉,滕继东,钟宇,张升,盛岱超. 基于格子Boltzmann方法的饱和冻土孔隙成冰介观尺度模拟. 岩土力学. 2023(01): 317-326 .
    5. 崔凯,吴博涵,李琼林,刘杰,苏磊. 融化期川西地区季节冻土边坡稳定性分析. 中国公路学报. 2023(06): 36-48 .
    6. 温智,邓友生,冯文杰,Aleksandr ZHIRKOV,张莲海,高樯. 冻土水分迁移机理研究:评述与展望. 冰川冻土. 2023(02): 588-598 .
    7. 刘倩倩,蔡国庆,秦宇腾,尹凤杰,李舰,赵成刚. 单向冻结条件下粗颗粒级配土的水热分布及冻胀特性研究. 岩石力学与工程学报. 2023(09): 2329-2340 .
    8. 施发祥,秦甲,韩添丁,孙洋,杨冰峰,付晓雷,游艳辉. 黄河源区冻土水文关键要素变化过程及特征分析. 地理科学进展. 2023(09): 1691-1703 .
    9. 任昆,于泽宁,石孟奇. 冻融条件下水泥煤渣改良土非均匀损伤特性. 铁道工程学报. 2023(07): 15-19+26 .
    10. 雷华阳,张文振,胡彪,李其昂. 气态水补给条件下不同类型土水分迁移规律及冻胀特性研究. 水道港口. 2023(05): 801-810 .
    11. 雷华阳,张文振,冯双喜,霍海峰. 水汽补给下砂土水分迁移规律及冻胀特性研究. 岩土力学. 2022(01): 1-14 .
    12. 何浩松,滕继东,张升,盛岱超. 试论冻害敏感性的合理性. 岩土工程学报. 2022(02): 224-234 . 本站查看
    13. 雷华阳,张文振,霍海峰,冯双喜,李其昂,刘汉磊. 水汽补给下砂土冻胀量与微观结构参数关联研究. 岩土力学. 2022(09): 2337-2346+2359 .
    14. 申艳军,魏欣,张蕾,张玉玺,李雪婷,陈兴. 高寒山地区冰碛土水热迁移规律及聚冰冻胀孕灾机制研究进展. 工程地质学报. 2022(05): 1450-1465 .
    15. 闫斌,娄徐瑞利,谢浩然,陈伟,程瑞琦. 冻胀冻融作用下材料劣化对板式无砟轨道性能的影响. 交通运输工程学报. 2021(05): 62-73 .

    Other cited types(17)

Catalog

    Article views (249) PDF downloads (191) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return