• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GOU Le-yu, LIU Xi-zhou, LI Sa, YIN Jiang-song, LI Ting-ting, LIU Xin. Preparation and mechanical properties of composite mycelial lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1933-1940. DOI: 10.11779/CJGE202110020
Citation: GOU Le-yu, LIU Xi-zhou, LI Sa, YIN Jiang-song, LI Ting-ting, LIU Xin. Preparation and mechanical properties of composite mycelial lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1933-1940. DOI: 10.11779/CJGE202110020

Preparation and mechanical properties of composite mycelial lightweight soil

More Information
  • Received Date: February 03, 2021
  • Available Online: December 02, 2022
  • A new type of lightweight backfill material is obtained by the natural growth of fungi. The unconfined compressive strength tests, permeability tests, scanning of electron microscope, and CT scanning tests are conducted to study the physico-mechanical and micro properties of composite mycelial lightweight soil (MLS). The results show that the MLS is a kind of porous and lightweight backfill material, formed by mycelium winding around the substrate filler materials. The colonization degree of mycelium has an important influence on its compressive strength. The permeability coefficient of the MLS is close to that of the silty clay. The permeability decreases with the addition of aggregate content, but the decreasing rate is related to the degree of mycelial colonization. The addition of aggregate improves the strength of the MLS. The higher the degree of the mycelial colonization, the more notable the increase in the compressive strength under the same aggregate content. The ratio of the peak strength to the residual strength is between 1.15 and 1.22. An exponential function equation is established between the compressive strength and the aggregate content. The MLS has the advantages of simple production process, low energy consumption and no environmental pollution, and is expected to become a new type of lightweight backfill material.
  • [1]
    MILED K, SAB K, LE ROY R. Particle size effect on EPS lightweight concrete compressive strength: experimental investigation and modelling[J]. Mechanics of Materials, 2007, 39(3): 222-240. doi: 10.1016/j.mechmat.2006.05.008
    [2]
    朱伟, 李明东, 张春雷, 等. 砂土 EPS 颗粒混合轻质土的 最优击实含水率[J]. 岩土工程学报, 2009, 31(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200901006.htm

    ZHU Wei, LI Ming-dong, ZHANG Chun-lei, et al. The optimum moisture content of sand EPS beads mixed lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 21-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200901006.htm
    [3]
    LOOMIS D, GUYTON K Z, GROSSE Y, et al. Carcinogenicity of benzene[J]. The Lancet Oncology, 2017, 18(12): 1574-1575. doi: 10.1016/S1470-2045(17)30832-X
    [4]
    SHAKIR M A, AZAHARI B, YUSUP Y, et al. Preparation and characterization of mycelium as a bio-matrix in fabrication of bio-composite[J]. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2020, 65(2): 253-263.
    [5]
    GHANBARI F, COSTANZO F, HUGHES D P, et al. Phase-field modeling of constrained interactive fungal networks[J]. Journal of the Mechanics and Physics of Solids, 2020, 145: 104160. doi: 10.1016/j.jmps.2020.104160
    [6]
    HOLT G A, MCINTYRE G, FLAGG D, et al. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts[J]. Journal of Biobased Materials and Bioenergy, 2012, 6(4): 431-439. doi: 10.1166/jbmb.2012.1241
    [7]
    XING Y, BREWER M, EL-GHARABAWY H, et al. Growing and testing mycelium bricks as building insulation materials[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2018, Sanya.
    [8]
    ELSACKER E, VANDELOOK S, BRANCART J, et al. Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates[J]. PLoS One, 2019, 14(7): e0213954. doi: 10.1371/journal.pone.0213954
    [9]
    PELLETIER M G, HOLT G A, WANJURA J D, et al. An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates[J]. Industrial Crops and Products, 2013, 51: 480-485. doi: 10.1016/j.indcrop.2013.09.008
    [10]
    PELLETIER M G, HOLT G A, WANJURA J D, et al. Acoustic evaluation of mycological biopolymer, an all-natural closed cell foam alternative[J]. Industrial Crops and Products, 2019, 139: 111533. doi: 10.1016/j.indcrop.2019.111533
    [11]
    JONES M, MAUTNER A, LUENCO S, et al. Engineered mycelium composite construction materials from fungal biorefineries: a critical review[J]. Materials & Design, 2020, 187: 108397.
    [12]
    APPELS F V W, CAMERE S, MONTALTI M, et al. Fabrication factors influencing mechanical, moisture-and water-related properties of mycelium-based composites[J]. Materials & Design, 2019, 161: 64-71.
    [13]
    JIANG L, WALCZYK D, MCINTYRE G, et al. Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms[J]. Journal of Manufacturing Processes, 2017, 28: 50-59. doi: 10.1016/j.jmapro.2017.04.029
    [14]
    JIANG L, WALCZYK D, MCINTYRE G, et al. Bioresin infused then cured mycelium-based sandwich-structure biocomposites: resin transfer molding (RTM) process, flexural properties, and simulation[J]. Journal of Cleaner Production, 2019, 207: 123-135. doi: 10.1016/j.jclepro.2018.09.255
    [15]
    ISLAM M R, TUDRYN G, BUCINELL R, et al. Morphology and mechanics of fungal mycelium[J]. Scientific Reports, 2017, 7(1): 13070. doi: 10.1038/s41598-017-13295-2
    [16]
    GHAZVINIAN A, FARROKHSIAR P, VIEIRA F, et al. Mycelium-based bio-composites for architecture: assessing the effects of cultivation factors on compressive strength[C]//The eCAADe and SIGraDi Conference, University of Porto, 2019, Portugal.
    [17]
    TRAVAGLINI S, NOBLE J, ROSS P G, et al. Mycology matrix composites[C]//Annual Technical Conference, 28th, American Society for Composites, 2013, Pennsylvania.
    [18]
    YANG Z, ZHANG F, STILL B, et al. Physical and mechanical properties of fungal mycelium-based biofoam[J]. Journal of Materials in Civil Engineering, 2017, 29(7): 04017030. doi: 10.1061/(ASCE)MT.1943-5533.0001866
    [19]
    ATTIAS N, DANAI O, ABITBOL T, et al. Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis[J]. Journal of Cleaner Production, 2020, 246: 119037. doi: 10.1016/j.jclepro.2019.119037
    [20]
    JIANG L. A New Manufacturing Process for Biocomposite Sandwich Parts Using a Myceliated Core, Natural Reinforcement and Infused Bioresin[D]. Ann Arbor: Rensselaer Polytechnic Institute, 2015.
    [21]
    WU J, CHEN C, ZHANG H, et al. Eco-friendly fiberboard production without binder using poplar wood shavings bio-pretreated by white rot fungi Coriolus versicolor[J]. Construction and Building Materials, 2020, 236: 117620. doi: 10.1016/j.conbuildmat.2019.117620
    [22]
    ZHANG X, FAN X, HAN C, et al. Improving soil surface erosion resistance by fungal mycelium[C]//Geo-Congress 2020: Foundations, Soil Improvement, and Erosion, 2020, Reston.
    [23]
    LÓPEZ NAVA J A, MÉNDEZ GONZÁLEZ J, RUELAS CHACÓN X, et al. Assessment of edible fungi and films bio-based material simulating expanded polystyrene[J]. Materials and Manufacturing Processes, 2016, 31(8): 1085-1090. doi: 10.1080/10426914.2015.1070420
    [24]
    LELIVELT R J J, LINDNER G, TEUFFEL P, et al. The production process and compressive strength of mycelium- based materials[C]//First International Conference on Bio- based Building Materials, 2015, Clermont-Ferrand.
    [25]
    ELRAGI A F. Selected Engineering Properties and Applications of EPS Geofoam[D]. Syracuse: State University of New York, 2000.
    [26]
    GAO H M, LIU J Y, LIU H L. Geotechnical properties of EPS composite soil[J]. International Journal of Geotechnical Engineering, 2011, 5(1): 69-77. doi: 10.3328/IJGE.2011.05.01.69-77
    [27]
    土工试验方法标准:GB/T 50123—2019[S]. 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. 2019. (in Chinese)
    [28]
    辛凌, 刘汉龙, 沈扬, 等. 废弃轮胎橡胶颗粒轻质混合土强度特性试验研究[J]. 岩土工程学报, 2010, 32(3): 428-433. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201003023.htm

    XIN Ling, LIU Han-long, SHEN Yang, et al. Consolidated undrained triaxial compression tests on lightweight soil mixed with rubber chips of scrap tires[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 428-433. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201003023.htm
    [29]
    谢约翰, 唐朝生, 尹黎阳, 等. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(4): 675-682. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904014.htm

    XIE Yue-han, TANG Chao-sheng, YIN Li-yang, et al. Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675-682. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904014.htm
  • Related Articles

    [1]CUI Chunyi, XU Minze, XU Chengshun, ZHAO Jingtong, LIU Hailong, MENG Kun. Seismic fragility analysis of subway station structures considering statistical uncertainty of seismic demands[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 453-462. DOI: 10.11779/CJGE20230980
    [2]ZHANG Chenlong, ZHANG Dongming, HUANG Zhongkai, HUANG Hongwei. Resilience assessment method for subway stations considering uncertainty of seismic intensity[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 164-172. DOI: 10.11779/CJGE20231153
    [3]LI Jinqiang, ZHONG Zilan, SHEN Jiaxu, ZHANG Bu, ZHANG Yabo, DU Xiuli. Longitudinal seismic fragility analysis of utility tunnel structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1622-1631. DOI: 10.11779/CJGE20230397
    [4]DAI Xuan, MA Yunxiang, WEI Shaowei, WEI Peiyong, HUO Haifeng, CAI Degou, LI Zhao. Seismic performance analysis of frame beams-reinforced slope under different earthquake intensities[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 147-152. DOI: 10.11779/CJGE2023S20019
    [5]QIU Dapeng, CHEN Jianyun, WANG Wenming, CAO Xiangyu. Fragility analysis of underground large-scale frame structures considering seismic effects of vertical earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2537-2546. DOI: 10.11779/CJGE20221053
    [6]ZHEN Libin, SHI Yuebo, ZHONG Zilan, DU Xiuli, LUO Wenlin. Efficient seismic fragility of underground structures using endurance time analysis method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 777-784. DOI: 10.11779/CJGE20220188
    [7]MENG Chang, TANG Liang. Seismic fragility analysis of pile-supported wharf in nearshore liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2274-2282. DOI: 10.11779/CJGE202112014
    [8]ZHONG Zi-lan, SHEN Yi-yao, HAO Ya-ru, LI Li-yun, DU Xiu-li. Seismic fragility analysis of two-story and three-span metro station structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 916-924. DOI: 10.11779/CJGE202005014
    [9]JIN Cong-cong, CHI Shi-chun, NIE Zhang-bo. Seismic safety analysis of high earth-rockfill dams based on seismic deformational fragility[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 334-343. DOI: 10.11779/CJGE202002015
    [10]ZHU Hong-wei, YAO Ling-kan, LAI Jun. Seismic vulnerability assessment of gravity retaining walls based on performance[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 150-157. DOI: 10.11779/CJGE202001017

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return