Citation: | GOU Le-yu, LIU Xi-zhou, LI Sa, YIN Jiang-song, LI Ting-ting, LIU Xin. Preparation and mechanical properties of composite mycelial lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1933-1940. DOI: 10.11779/CJGE202110020 |
[1] |
MILED K, SAB K, LE ROY R. Particle size effect on EPS lightweight concrete compressive strength: experimental investigation and modelling[J]. Mechanics of Materials, 2007, 39(3): 222-240. doi: 10.1016/j.mechmat.2006.05.008
|
[2] |
朱伟, 李明东, 张春雷, 等. 砂土 EPS 颗粒混合轻质土的 最优击实含水率[J]. 岩土工程学报, 2009, 31(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200901006.htm
ZHU Wei, LI Ming-dong, ZHANG Chun-lei, et al. The optimum moisture content of sand EPS beads mixed lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 21-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200901006.htm
|
[3] |
LOOMIS D, GUYTON K Z, GROSSE Y, et al. Carcinogenicity of benzene[J]. The Lancet Oncology, 2017, 18(12): 1574-1575. doi: 10.1016/S1470-2045(17)30832-X
|
[4] |
SHAKIR M A, AZAHARI B, YUSUP Y, et al. Preparation and characterization of mycelium as a bio-matrix in fabrication of bio-composite[J]. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2020, 65(2): 253-263.
|
[5] |
GHANBARI F, COSTANZO F, HUGHES D P, et al. Phase-field modeling of constrained interactive fungal networks[J]. Journal of the Mechanics and Physics of Solids, 2020, 145: 104160. doi: 10.1016/j.jmps.2020.104160
|
[6] |
HOLT G A, MCINTYRE G, FLAGG D, et al. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts[J]. Journal of Biobased Materials and Bioenergy, 2012, 6(4): 431-439. doi: 10.1166/jbmb.2012.1241
|
[7] |
XING Y, BREWER M, EL-GHARABAWY H, et al. Growing and testing mycelium bricks as building insulation materials[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2018, Sanya.
|
[8] |
ELSACKER E, VANDELOOK S, BRANCART J, et al. Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates[J]. PLoS One, 2019, 14(7): e0213954. doi: 10.1371/journal.pone.0213954
|
[9] |
PELLETIER M G, HOLT G A, WANJURA J D, et al. An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates[J]. Industrial Crops and Products, 2013, 51: 480-485. doi: 10.1016/j.indcrop.2013.09.008
|
[10] |
PELLETIER M G, HOLT G A, WANJURA J D, et al. Acoustic evaluation of mycological biopolymer, an all-natural closed cell foam alternative[J]. Industrial Crops and Products, 2019, 139: 111533. doi: 10.1016/j.indcrop.2019.111533
|
[11] |
JONES M, MAUTNER A, LUENCO S, et al. Engineered mycelium composite construction materials from fungal biorefineries: a critical review[J]. Materials & Design, 2020, 187: 108397.
|
[12] |
APPELS F V W, CAMERE S, MONTALTI M, et al. Fabrication factors influencing mechanical, moisture-and water-related properties of mycelium-based composites[J]. Materials & Design, 2019, 161: 64-71.
|
[13] |
JIANG L, WALCZYK D, MCINTYRE G, et al. Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms[J]. Journal of Manufacturing Processes, 2017, 28: 50-59. doi: 10.1016/j.jmapro.2017.04.029
|
[14] |
JIANG L, WALCZYK D, MCINTYRE G, et al. Bioresin infused then cured mycelium-based sandwich-structure biocomposites: resin transfer molding (RTM) process, flexural properties, and simulation[J]. Journal of Cleaner Production, 2019, 207: 123-135. doi: 10.1016/j.jclepro.2018.09.255
|
[15] |
ISLAM M R, TUDRYN G, BUCINELL R, et al. Morphology and mechanics of fungal mycelium[J]. Scientific Reports, 2017, 7(1): 13070. doi: 10.1038/s41598-017-13295-2
|
[16] |
GHAZVINIAN A, FARROKHSIAR P, VIEIRA F, et al. Mycelium-based bio-composites for architecture: assessing the effects of cultivation factors on compressive strength[C]//The eCAADe and SIGraDi Conference, University of Porto, 2019, Portugal.
|
[17] |
TRAVAGLINI S, NOBLE J, ROSS P G, et al. Mycology matrix composites[C]//Annual Technical Conference, 28th, American Society for Composites, 2013, Pennsylvania.
|
[18] |
YANG Z, ZHANG F, STILL B, et al. Physical and mechanical properties of fungal mycelium-based biofoam[J]. Journal of Materials in Civil Engineering, 2017, 29(7): 04017030. doi: 10.1061/(ASCE)MT.1943-5533.0001866
|
[19] |
ATTIAS N, DANAI O, ABITBOL T, et al. Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis[J]. Journal of Cleaner Production, 2020, 246: 119037. doi: 10.1016/j.jclepro.2019.119037
|
[20] |
JIANG L. A New Manufacturing Process for Biocomposite Sandwich Parts Using a Myceliated Core, Natural Reinforcement and Infused Bioresin[D]. Ann Arbor: Rensselaer Polytechnic Institute, 2015.
|
[21] |
WU J, CHEN C, ZHANG H, et al. Eco-friendly fiberboard production without binder using poplar wood shavings bio-pretreated by white rot fungi Coriolus versicolor[J]. Construction and Building Materials, 2020, 236: 117620. doi: 10.1016/j.conbuildmat.2019.117620
|
[22] |
ZHANG X, FAN X, HAN C, et al. Improving soil surface erosion resistance by fungal mycelium[C]//Geo-Congress 2020: Foundations, Soil Improvement, and Erosion, 2020, Reston.
|
[23] |
LÓPEZ NAVA J A, MÉNDEZ GONZÁLEZ J, RUELAS CHACÓN X, et al. Assessment of edible fungi and films bio-based material simulating expanded polystyrene[J]. Materials and Manufacturing Processes, 2016, 31(8): 1085-1090. doi: 10.1080/10426914.2015.1070420
|
[24] |
LELIVELT R J J, LINDNER G, TEUFFEL P, et al. The production process and compressive strength of mycelium- based materials[C]//First International Conference on Bio- based Building Materials, 2015, Clermont-Ferrand.
|
[25] |
ELRAGI A F. Selected Engineering Properties and Applications of EPS Geofoam[D]. Syracuse: State University of New York, 2000.
|
[26] |
GAO H M, LIU J Y, LIU H L. Geotechnical properties of EPS composite soil[J]. International Journal of Geotechnical Engineering, 2011, 5(1): 69-77. doi: 10.3328/IJGE.2011.05.01.69-77
|
[27] |
土工试验方法标准:GB/T 50123—2019[S]. 2019.
Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. 2019. (in Chinese)
|
[28] |
辛凌, 刘汉龙, 沈扬, 等. 废弃轮胎橡胶颗粒轻质混合土强度特性试验研究[J]. 岩土工程学报, 2010, 32(3): 428-433. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201003023.htm
XIN Ling, LIU Han-long, SHEN Yang, et al. Consolidated undrained triaxial compression tests on lightweight soil mixed with rubber chips of scrap tires[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 428-433. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201003023.htm
|
[29] |
谢约翰, 唐朝生, 尹黎阳, 等. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(4): 675-682. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904014.htm
XIE Yue-han, TANG Chao-sheng, YIN Li-yang, et al. Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675-682. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904014.htm
|
[1] | CUI Chunyi, XU Minze, XU Chengshun, ZHAO Jingtong, LIU Hailong, MENG Kun. Seismic fragility analysis of subway station structures considering statistical uncertainty of seismic demands[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 453-462. DOI: 10.11779/CJGE20230980 |
[2] | ZHANG Chenlong, ZHANG Dongming, HUANG Zhongkai, HUANG Hongwei. Resilience assessment method for subway stations considering uncertainty of seismic intensity[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 164-172. DOI: 10.11779/CJGE20231153 |
[3] | LI Jinqiang, ZHONG Zilan, SHEN Jiaxu, ZHANG Bu, ZHANG Yabo, DU Xiuli. Longitudinal seismic fragility analysis of utility tunnel structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1622-1631. DOI: 10.11779/CJGE20230397 |
[4] | DAI Xuan, MA Yunxiang, WEI Shaowei, WEI Peiyong, HUO Haifeng, CAI Degou, LI Zhao. Seismic performance analysis of frame beams-reinforced slope under different earthquake intensities[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 147-152. DOI: 10.11779/CJGE2023S20019 |
[5] | QIU Dapeng, CHEN Jianyun, WANG Wenming, CAO Xiangyu. Fragility analysis of underground large-scale frame structures considering seismic effects of vertical earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2537-2546. DOI: 10.11779/CJGE20221053 |
[6] | ZHEN Libin, SHI Yuebo, ZHONG Zilan, DU Xiuli, LUO Wenlin. Efficient seismic fragility of underground structures using endurance time analysis method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 777-784. DOI: 10.11779/CJGE20220188 |
[7] | MENG Chang, TANG Liang. Seismic fragility analysis of pile-supported wharf in nearshore liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2274-2282. DOI: 10.11779/CJGE202112014 |
[8] | ZHONG Zi-lan, SHEN Yi-yao, HAO Ya-ru, LI Li-yun, DU Xiu-li. Seismic fragility analysis of two-story and three-span metro station structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 916-924. DOI: 10.11779/CJGE202005014 |
[9] | JIN Cong-cong, CHI Shi-chun, NIE Zhang-bo. Seismic safety analysis of high earth-rockfill dams based on seismic deformational fragility[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 334-343. DOI: 10.11779/CJGE202002015 |
[10] | ZHU Hong-wei, YAO Ling-kan, LAI Jun. Seismic vulnerability assessment of gravity retaining walls based on performance[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 150-157. DOI: 10.11779/CJGE202001017 |