• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
RAN Wu-ping, WANG Jin-shan, AI Xian-chen, CHEN Hui-min, QIAN Jian-gu. Laboratory tests and theoretical model for dynamic resilient modulus of coarse-grained chlorine saline soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1746-1754. DOI: 10.11779/CJGE202109021
Citation: RAN Wu-ping, WANG Jin-shan, AI Xian-chen, CHEN Hui-min, QIAN Jian-gu. Laboratory tests and theoretical model for dynamic resilient modulus of coarse-grained chlorine saline soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1746-1754. DOI: 10.11779/CJGE202109021

Laboratory tests and theoretical model for dynamic resilient modulus of coarse-grained chlorine saline soil

More Information
  • Received Date: August 11, 2020
  • Available Online: December 02, 2022
  • To explore the influences of load, salinity and humidity on the dynamic resilient modulus of coarse-grained chlorine saline soil, the dynamic rebound characteristics of the soil under different stresses, salt contents and water contents are studied based on the laboratory dynamic triaxial tests. The measured results reveal that the value of the dynamic resilient modulus inceases with the increase of the confining pressure and bulk stress, and decreases with the increase of the partial stress, salinity and moisture. The higher the salt content and moisture content in the soil, the more obvious the influences of the confining pressure, partial stress and bulk stress on its dynamic resilient modulus. Under the same stress, the value of the dynamic resilient modulus decreases more considerably with the increase of the salt content and moisture content, and the effects of salt tend to be more significant than those of water. Through the regression analysis of the test data based on a three-parameter theoretical model, the proposed model has a preferably higher determination coefficient, and the formula for predicting the model parameters with high precision is established. It is shown that the theoretical model is suitable to predict the dynamic resilient modulus of coarse-grained chlorine saline soil.
  • [1]
    SEED H B, CHAN C K, LEE C E. Resilient characteristics of subgrade soils and their relations to fatigue failures in asphalt pavements[C]//Proceedings of International Conference on the Structural Design of Asphalt Pavements Supplement, 1962, Michigan.
    [2]
    ANDREI D, WITCZAK M W, SCHWARTZ C W, et al. Harmo-nized resilient modulus test method for unbound pavement materials[J]. Transportation Research Record: Journal of the Transportation Research Board, 2004, 1874(1): 29-37. doi: 10.3141/1874-04
    [3]
    RAHIM A M. Subgrade soil index properties to estimate resilient modulus for pavement design[J]. International Journal of Pavement Engineering, 2005, 6(3): 163-169. doi: 10.1080/10298430500140891
    [4]
    凌建明, 苏华才, 谢华昌, 等. 路基土动态回弹模量的试验研究[J]. 地下空间与工程学报, 2010, 6(5): 919-925. doi: 10.3969/j.issn.1673-0836.2010.05.008

    LING Jian-ming, SU Hua-cai, XIE Hua-chang, et al. Laboratory research on dynamic resilient modulus of subgrade soil[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(5): 919-925. (in Chinese) doi: 10.3969/j.issn.1673-0836.2010.05.008
    [5]
    陈声凯, 凌建明, 罗志刚. 路基土回弹模量应力依赖性分析及预估模型[J]. 土木工程学报, 2007, 40(6): 95-99. doi: 10.3321/j.issn:1000-131X.2007.06.017

    CHEN Sheng-kai, LING Jian-ming, LUO Zhi-gang. Stress-dependent characteristics and prediction model of the resilient modulus of subgrade soils[J]. China Civil Engineering Journal, 2007, 40(6): 95-99. (in Chinese) doi: 10.3321/j.issn:1000-131X.2007.06.017
    [6]
    冉武平, 李玲, 张翛, 等. 重塑黄土动态回弹模量依赖性分析及预估模型[J]. 湖南大学学报(自然科学版), 2018, 45(9): 130-137. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201809015.htm

    RAN Wu-ping, LI Ling, ZHANG Xiao, et al. Dependence analysis and prediction model of dynamic resilient modulus of remodeled-loess[J]. Journal of Hunan University(Natural Sciences), 2018, 45(9): 130-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201809015.htm
    [7]
    刘维正, 曾奕珺, 姚永胜, 等. 含水率变化下压实路基土动态回弹模量试验研究与预估模型[J]. 岩土工程学报, 2019, 41(1): 175-183. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901024.htm

    LIU Wei-zheng, ZENG Yi-jun, YAO Yong-sheng, et al. Experimental study and prediction model of dynamic resilient modulus of compacted subgrade soils subjected to moisture variation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 175-183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901024.htm
    [8]
    董城, 李志勇, 岳志平, 等. 砂土路用动态特性试验研究[J]. 岩石力学与工程学报, 2012, 31(增刊1): 3407-3412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1108.htm

    DONG Cheng, LI Zhi-yong, YUE Zhi-ping, et al. Experi-mental study of dynamic characteristics of sand for highway subgrade[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3407-3412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1108.htm
    [9]
    MUHANNA A S, RAHMAN M S, LAMBE P C. Resilient modulus measurement of fine-grained subgrade soils[J]. Transportation Research Record, 1999, 1687(1): 3-12. doi: 10.3141/1687-01
    [10]
    张翛, 赵队家, 刘少文, 等. 美国路基土回弹模量确定方法研究现状[J]. 重庆交通大学学报(自然科学版), 2012, 31(4): 795-798. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201204016.htm

    ZHANG Xiao, ZHAO Dui-jia, LIU Shao-wen, et al. Research progress on determination of resilient modulus of subgrade soils in U. S.[J]. Journal of Chongqing Jiaotong University (Natural Science), 2012, 31(4): 795-798. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201204016.htm
    [11]
    凌建明, 陈声凯, 曹长伟. 路基土回弹模量影响因素分析[J]. 建筑材料学报, 2007, 10(4): 446-451. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200704012.htm

    LING Jian-ming, CHEN Sheng-kai, CAO Chang-wei. Analysis of influence factors on resilient modulus of subgrade soils[J]. Journal of Building Materials, 2007, 10(4): 446-451. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200704012.htm
    [12]
    朱俊高, 王元龙, 贾华, 等. 粗粒土回弹特性试验研究[J]. 岩土工程学报, 2011, 33(6): 950-954. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201106024.htm

    ZHU Jun-gao, WANG Yuan-long, JIA Hua, et al. Experimental study on resil-ience behaviour of coarse grained soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 950-954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201106024.htm
    [13]
    罗志刚. 路基与粒料层动态模量参数研究[D]. 上海: 同济大学交通运输工程学院, 2007: 52-72.

    LUO Zhi-gang. Rsearch on Dynamic Modulus Parameters of Subgrade and Granular Layers[D]. Shanghai: College of Transportation Engineering, Tongji University, 2007: 52-72. (in Chinese)
    [14]
    陈声凯, 凌建明, 张世洲. 路基土动态回弹模量室内试验加载序列的确定[J]. 公路, 2006, 11(5): 148-152. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200611033.htm

    CHEN Sheng-kai, LING Jian-ming, ZHANG Shi-zhou. Fixing loading sequence for resilient modulus test of subgrade soil[J]. Highway, 2006, 11(5): 148-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200611033.htm
    [15]
    ZHANG J H, PENG J H, LIU W Z, et al. Predicting resilient modulus of fine-grained subgrade soils considering relative compaction and matric suction[J]. Road Materials and Pavement Design, 2021, 22(3): 703-715.
    [16]
    张军辉, 彭俊辉, 郑健龙. 路基土动态回弹模量预估进展与展望[J]. 中国公路学报, 2020, 33(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202001001.htm

    ZHANG Jun-hui, PENG Jun-hui, ZHENG Jian-long. Progress and prospect of the prediction model of the resilient modulus of subgrade soils[J]. China Journal of Highway and Transport, 2020, 33(1): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202001001.htm
    [17]
    SEED H B, MITRY F G, MONOSMITH C L, et al. Prediction of Pavement Deflection from Laboratory Repeated Load Tests (NCHRP Report 35)[R]. Washington D C: Transportation Research Board, 1967.
    [18]
    THOMPSON M R, ELLIOTT R P. ILLI-PAVE Based Re-sponse Algorithms for Design of Conventional Flexible Pavements[R]. Washington D C: Transportation Research Record, 1985.
    [19]
    MOOSADEH J, WITCZAK M W. Prediction of Subgrade Moduli for Soil That Exhibits Nonlinear Behavior[R]. Washington D C: Transportation Research Record, 1981.
    [20]
    DRUMM E C, BOATENG-POKU Y, JOHNSON P T. Esti-mation of subgrade resilient modulus from standard tests[J]. Journal of Geotechnical Engineering, 1990, 116(5): 774-789.
    [21]
    UZAN J. Characterization of Granular Materials[R]. Washington D C: Transportation Research Record 1022, Transportation Research Board, National Research Council, 1985.
    [22]
    WITCZAK M W, UZAN J. The Universal Airport Pavement Design System-Report I of V: Granular Material Characterization[R]. Washington D C: Department of Civil Engineering, University of Maryland, 1988.
    [23]
    LYTTON R L, UZAN J, FERNANDO E G, et al. Development and Validation of Performance Prediction Models and Specifi-Cations for Asphalt Binders and Paving Mixes[R]. Washington D C: Report SHRP A-357, Strategic Highway Research Program, National Research Council, 1993.
    [24]
    NCHRP Project 1-28. Laboratory Determination of Resilient Modulus for Flexible Pavement Design-Final Report[R]. Washington D C: National Cooperative Highway Research Program, Transportation Research Board, National Research Council, 1997.
    [25]
    洪安宇, 杨晓松, 党进谦, 等. 非饱和氯盐渍土抗剪强度特性试验研究[J]. 长江科学院院报, 2013, 30(4): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201304012.htm

    HONG An-yu, YANG Xiao-song, DANG Jin-qian, et al. Shear strength property of unsaturated chlorine saline soil[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(4): 52-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201304012.htm
    [26]
    陈炜韬, 王明年, 王鹰, 等. 含盐量及含水率对氯盐盐渍土抗剪强度参数的影响[J]. 中国铁道科学, 2006, 27(4): 1-5.

    CHEN Wei-tao, WANG Ming-nian, WANG Ying, et al. Influence of salt content and water content on the shearing strength parameters of chlorine saline soil[J]. China Railway Science, 2006, 27(4): 1-5. (in Chinese)
    [27]
    张宁霞, 刘保健, 赵丽娅. 氯盐渍土的工程特性研究[J]. 工程勘察, 2012, 40(6): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201206005.htm

    ZHANG Ning-xia, LIU Bao-jian, ZHAO Li-ya. Study on engineering characteristics of chlorine saline soil[J]. Geotechnical Investigation & Surveying, 2012, 40(6): 14-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201206005.htm
    [28]
    李永红. 氯盐渍土的变形和强度特性研究[D]. 杨凌: 西北农林科技大学, 2006.

    LI Yong-hong. Research on Deformation and Strength Properties of Chlorine Saline Soil[D]. Yangling: Northwest A&F University, 2006. (in Chinese)
    [29]
    YAU A, VON QUINTUS H L. Predicting elastic response characteristic of unbound materials and soils[R]. Washington D C: 83rd Annual Meeting of Transportation Research Board (CD-ROM), 2004.
    [30]
    FHWA. Study of LTPP laboratory resil-ient modulus test data and response characteristics-final report[R]. FHWA-RD-02-051, LTPP, Federal Highway Administration, 2002.
  • Related Articles

    [1]HOU Tianshun, ZHANG Jiancheng, SHU Bo. Model tests on earth pressure at rest of light weight soil behind rigid retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 764-773. DOI: 10.11779/CJGE20220928
    [2]HOU Tian-shun, GUO Peng-fei, YANG Kai-xuan, WANG Qi, LUO Ya-sheng. Characteristics and method for calculating earth pressure at rest of light weight soil with foamed particles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2234-2244. DOI: 10.11779/CJGE202212010
    [3]ZHANG Kun-yong, LI Guang-shan, MEI Xiao-hong, DU Wei. Stress-deformation characteristics of silty soil based on K0 consolidation and drainage unloading stress path tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1182-1188. DOI: 10.11779/CJGE201707003
    [4]MO Wei-hong, CHEN Xiao-ping, LUO Qing-zi. Deformation of soft soils under constant stress ration consolidation with K0 [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 798-803.
    [5]JIA Ning. Coefficient of at-rest earth pressure from limited backfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1333-1337.
    [6]Cyclic shearing behavior of K0-consolidated clay and its rheological simulation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1946-1955.
    [7]Critical load of ground considering load embedded depth and variation of K0[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1930-1934.
    [8]YAO Yangping, HOU Wei. A unified hardening model for K0 overconsolidated clays[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 316-322.
    [9]WANG Lizhong, DAN Hanbo. Elastic viscoplastic constitutive model for K0-consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1344-1354.
    [10]WANG Lizhong, YE Shenghua, SHEN Kailun, HU Yayuan. Undrained shear strength of K0 consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 970-977.
  • Cited by

    Periodical cited type(12)

    1. 裘友强,张留俊,刘洋,刘军勇,尹利华. “双碳”背景下公路软土地基处理技术研究进展. 水利水电技术(中英文). 2025(01): 113-131 .
    2. 龙军,彭搏程. 基于桩周土围限失效的筋箍料粒桩复合地基承载力计算. 公路工程. 2025(01): 138-143 .
    3. 谭鑫,尹心,胡政博,裘钊辉,陈昌富. 筋箍碎石桩承载机制的三维离散-连续介质耦合数值模拟. 铁道学报. 2023(04): 139-147 .
    4. 王嘉鑫,纪明昌,郑俊杰,郑烨炜. 软土地基中包裹碎石桩地震动力响应数值模拟研究. 土木与环境工程学报(中英文). 2023(05): 58-65 .
    5. 郝耀虎,周杨,王闫超,刘少炜. 基于透明土技术的加筋碎石桩承载特性试验研究. 铁道科学与工程学报. 2023(12): 4582-4591 .
    6. 黄河,罗正东,李检保,罗彪. 竹筋格栅套筒加筋碎石桩承载力分析. 人民长江. 2022(06): 193-197 .
    7. 袁涌筌,赵明华,杨超炜,肖尧. 循环荷载下筋箍碎石桩复合地基动力特性数值分析. 湖南大学学报(自然科学版). 2022(11): 198-205 .
    8. 臧一平,刘聪. 考虑鼓胀和自重的散体材料桩复合地基承载力分析. 地基处理. 2021(06): 451-457 .
    9. 郑刚,周海祚. 复合地基极限承载力与稳定研究进展. 天津大学学报(自然科学与工程技术版). 2020(07): 661-673 .
    10. 李建喜,康超,李玉峰. 碎石桩处理软土地基的现状及趋势分析. 北方建筑. 2020(03): 60-63+67 .
    11. 邱梦瑶,陈树培,唐亮,凌贤长,张效禹,李雪伟,刘书幸. 加筋碎石桩复合饱和砂土地基抗液化性能评价方法. 地震研究. 2020(03): 554-562+603 .
    12. 姚志伟,张永艳. 筏板基础下碎石桩改良软土地基性能的数值研究. 河北工业科技. 2020(05): 359-365 .

    Other cited types(13)

Catalog

    Article views (289) PDF downloads (108) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return