• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Xu-min, HUANG Lin-chong, LIANG Yu. Analysis and application of longitudinal uplift characteristics of segments of shield tunnels affected by synchronous grouting during construction period[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1700-1707. DOI: 10.11779/CJGE202109015
Citation: HUANG Xu-min, HUANG Lin-chong, LIANG Yu. Analysis and application of longitudinal uplift characteristics of segments of shield tunnels affected by synchronous grouting during construction period[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1700-1707. DOI: 10.11779/CJGE202109015

Analysis and application of longitudinal uplift characteristics of segments of shield tunnels affected by synchronous grouting during construction period

More Information
  • Received Date: January 14, 2021
  • Available Online: December 02, 2022
  • The synchronous grouting is a key procedure during the construction of shield tunnels, and the uplift pressure generated by the grout is an important factor leading to the uplift of segments. Within the length of unconsolidated zone, the uplift pressure decreases and the foundation coefficient of the overlying soil increases gradually. Aiming at this kind of complex mechanical problem, a method for predicting the uplift of segments of shield tunnels during the construction period is proposed based on the theory of the matrix transfer method for elastic foundation beams. The influences of the time-varying property of grout viscosity, the variety of the foundation coefficient and the superimposed effect of construction load step are considered. The proposed model is well verified by the comparison between the theoretical results and the field test data. The results show that the maximum uplift of segments caused by the synchronous grouting is generally 6~7 rings away from the shield tail, and the influences are small beyond 40 rings. The time-varying property of grout viscosity affects the longitudinal distribution of unconsolidated zone and the uplift pressure. The grout viscosity increasing with time will decrease the grout fluidity and the permeability of surrounding soil. Therefore, it leads to the decrease of grout pressure which causes a larger uplift pressure and a longer length of unconsolidated zone. The coupling calculation of two kinds of elastic foundation beams under the complex variable foundation coefficient and the fine prediction for uplift of segments under the influences of multiple factors are solved. The research results can provide a reference for the subsequent control for the uplift of segments of the similar shield tunnels.
  • [1]
    陈仁朋, 刘源, 刘声向. 盾构隧道管片施工期上浮特性[J]. 浙江大学学报:工学版, 2014, 48: 1068-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201406014.htm

    CHEN Ren-peng, LIU Yuan, LIU Sheng-xiang. Characteristics of upward moving for lining during shield tunneling construction[J]. Journal of Zhejiang University: Engineering Science, 2014, 48: 1068-1074. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201406014.htm
    [2]
    肖明清, 孙文昊, 韩向阳. 盾构隧道管片上浮问题研究[J]. 岩土力学, 2009, 30(4): 1041-1045. doi: 10.3969/j.issn.1000-7598.2009.04.031

    XIAO Ming-qing, SUN Wen-hao, HAN Xiang-yang. Research on upward moving of segments of shield tunnel[J]. Rock and Soil Mechanics, 2009, 30(4): 1041-1045. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.04.031
    [3]
    侯公羽, 杨悦, 刘波. 盾构管片接头模型的改进及管片内力的数值计算[J]. 岩石力学与工程学报, 2007, 26(增刊1): 4284-4291. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2103.htm

    HOU Gong-yu, YANG Yue, LIU Bo. Improved joint model of shield tunnel segments and numerical calculation of inner forces[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 4284-4291. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2103.htm
    [4]
    魏纲, 张鑫海, 林心蓓. 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 636-644. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002035.htm

    WEI Gang, ZHANG Xin-hai, LIN Xin-bei. Variations of transverse forces on nearby shield tunnel caused by foundation pits excavation[J]. Rock and Soil Mechanics, 2020, 41(2): 636-644. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002035.htm
    [5]
    彭益成, 丁文其, 闫治国. 修正惯用法中弯曲刚度有效率的影响因素分析及计算方法[J]. 岩土工程学报, 2013, 31(增刊1): 495-500. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1085.htm

    PENG Yi-cheng, DING Wen-qi, YAN Zhi-guo. Analysis and calculation method of effective bending rigidity ratio in modified routine method[J]. Chinese Journal of Geotechnical Engineering, 2013, 31(S1): 495-500. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1085.htm
    [6]
    LEE K M, HOU X Y, GE X W, et al. An analytical solution for a jointed shield-driven tunnel lining[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(4): 365-390. doi: 10.1002/nag.134
    [7]
    KOIZUMI A, MURAKAMI H, ISHIDA T. Design method of segments at a sharply curved section[J]. Journal of Japanese Society of Civil Engineers, 1992(448): 111-120. (in Japanese)
    [8]
    朱合华, 周龙, 朱建文. 管片衬砌梁-弹簧广义模型及接头转动非线性模拟[J]. 岩土工程学报, 2019, 41(9): 1581-1590. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909002.htm

    ZHU He-hua, ZHOU Long, JU Jiann-wen. Beam-spring generalized model for segmental lining and simulation of its nonlinear rotation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1581-1590. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909002.htm
    [9]
    SHIBA Y, KAWASHIMA K, OBINATA N. Seismic design method of shield tunnel using response displacement method[J]. Journal of Japanese Society of Civil Engineers, 1986, 5: 113.
    [10]
    叶飞, 朱合华, 丁文其. 基于弹性地基梁的盾构隧道纵向上浮分析[J]. 中国铁道科学, 2008, 29(4): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200804011.htm

    YE Fei, ZHU He-hua, DING wen-qi. Longitudinal upward movement analysis of shield tunnel based on elastic foundation beam[J]. China Railway Science, 2008, 29(4): 65-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200804011.htm
    [11]
    朱令, 丁文其, 杨波. 壁后注浆引起盾构隧道上浮对结构的影响[J]. 岩石力学与工程学报, 2012, 31(增刊2): 3378-3382. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1103.htm

    ZHU ling, DING Wen-qi, YANG Bo. Effect of shield tunnel uplift caused by back-filled grouting on structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 3378-3382. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1103.htm
    [12]
    杨方勤. 超大直径泥水盾构隧道抗浮实验与理论研究[D]. 上海: 同济大学, 2010.

    YANG Fang-qin. Large Diameter Slurry Shield Tunnel Tests and Theoretical Studies of Anti-Floating[D]. Shanghai: Tongji University, 2010. (in Chinese)
    [13]
    舒瑶, 季昌, 周华顺. 考虑地层渗透性的盾构隧道施工期管片上浮预测[J]. 岩石力学与工程学报, 2017, 36(增刊1): 3516-3524. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1046.htm

    SHU Yao, JI Chang, ZHOU Shun-hua. Prediction for shield tunnel segment uplift considering the effect of stratum permeability[J]. Chinese Journal of Rock Mechanic and Engineering, 2017, 36(S1): 3516-3524. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1046.htm
    [14]
    梁禹, 黄林冲. 盾构隧道同步注浆压力时空分布规律[J]. 哈尔滨工业大学学报, 2018, 50(3): 165-170. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201803023.htm

    LIANG Yu, HUANG Lin-chong. Grout pressure distribution characteristics in space-time domain of shield tunnels during synchronous grouting[J]. Journal of Harbin Institute of Technology, 2018, 50(3): 165-170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201803023.htm
    [15]
    TALMON A M, BEZUIJEN A. Analytical model for beam action of a tunnel lining during construction[J]. International Journal of Numerical and Analytical Methods in GeoMechanics, 2013, 37(2): 181-200.
    [16]
    TALMON A M, BEZUIJEN A. Calculation of longitudinal bending moment and shear force for Shanghai Yangtze River Tunnel: application of lessons from Dutch research[J]. Tunneling and Underground Space Technology, 2013, 35(3): 161-171.
    [17]
    小泉淳. 盾构隧道管片设计-从容许应力设计法到极限状态设计法[M]. 北京: 中国建筑工业出版社, 2012: 187-189.

    Atsushi KOIZUMI. The Segment Design of Shield Tunneling[M]. Beijing: China Architecture and Building Press, 2012: 187-189. (in Chinese)
    [18]
    叶飞, 杨鹏博, 毛家骅. 基于模型试验的盾构隧道纵向刚度分析[J]. 岩土工程学报, 2015, 37(1): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201501011.htm

    YE Fei, YANG Peng-bo, MAO Jia-hua. Longitudinal rigidity of shield tunnels based on model tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 83-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201501011.htm
    [19]
    田敬学, 张庆贺. 盾构法隧道的纵向刚度计算方法[J]. 中国市政工程, 2001(3): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSZ200103011.htm

    TIAN Jing-xue, ZHANG Qing-he. Calculation of longitudinal rigidity of shield tunnels[J]. China Municipal Engineering, 2001(3): 35-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSZ200103011.htm
    [20]
    刘庆潭, 倪国荣. 结构分析中的传递矩阵法[M]. 北京: 中国铁道出版社, 1997: 40-55.

    LIU Qing-tan, NI Guo-rong. Matrix Transfer Method for Structural Analysis[M]. Beijing: China Railway Publishing House, 1997: 40-55. (in Chinese)
  • Cited by

    Periodical cited type(7)

    1. 蒋家卫,李文彪,赵雅芝,陈国兴,杜修力. 场地均质性对浅埋地铁车站地下结构地震易损性的影响. 振动与冲击. 2024(06): 151-156+178 .
    2. 韩俊艳,李玉凤,钟紫蓝,缪惠全,杜修力. 不同场地条件下埋地腐蚀钢管地震易损性评价. 岩土工程学报. 2024(04): 774-783 . 本站查看
    3. 林峻岑,孙纬宇,李国玉,严松宏,佟浩. 基于矢量IMs的浅埋偏压黄土隧道地震易损性. 东南大学学报(自然科学版). 2024(02): 432-440 .
    4. 蒋家卫,黄文婷,赵凯,陈国兴,杜修力. 典型浅埋矩形框架地铁车站地下结构地震易损性分析. 工程力学. 2024(09): 9-17 .
    5. 郭志辉. 复杂高层建筑结构抗震设计方法研究. 砖瓦. 2023(03): 95-97 .
    6. 谭灿星,周瑾. 两层三跨岛式地铁车站的地震响应研究. 广东土木与建筑. 2023(04): 73-77 .
    7. 谢宏飞,蔡海兵. 地铁地下车站抗震研究主要方法与现状. 建井技术. 2023(06): 85-90 .

    Other cited types(8)

Catalog

    Article views (327) PDF downloads (160) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return