Citation: | FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, ZHA Fu-sheng, XU Long. Prediction of soil-water characteristic curve based on pore size distribution of soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691-1699. DOI: 10.11779/CJGE202109014 |
[1] |
FREDLUND D G, HOUSTON S L. Protocol for the assessment of unsaturated properties in geotechnical engineering practice[J]. Canadian Geotechnical Journal, 2009, 46: 694-707. doi: 10.1139/T09-010
|
[2] |
NAM S, GUTIERREZ M, DIPLAS P, et al. Comparison of testing techniques and models for establishing the SWCC of riverbank soils[J]. Engineering Geology, 2009, 110: 1-10.
|
[3] |
ZHANG Y W, SONG Z P, WENG X L, et al. A new soil-water characteristic curve model for unsaturated loess based on wetting-induced pore deformation[J]. Geoflfluids, 2019(3): 1-14.
|
[4] |
JOHARI A, HABIBAGAHI G, GHAHRAMANI A. Prediction of soil-water characteristic curve using genetic programming[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 661-665. doi: 10.1061/(ASCE)1090-0241(2006)132:5(661)
|
[5] |
AUBERTIN M, RICARD J F, CHAPUIS R P. A predictive model for the water retention curve: application to tailings from hard-rock mines[J]. Canadian Geotechnical Journal, 1998, 35(1): 55-69. doi: 10.1139/t97-080
|
[6] |
AUBERTIN M, MBONIMPA M, BUSSIÈRE B, et al. A model to predict the water retention curve from basic geotechnical properties[J]. Canadian Geotechnical Journal, 2003, 40(6): 1104-1122. doi: 10.1139/t03-054
|
[7] |
MBONIMPA M, AUBERTIN M, MAQSOUD A, et al. Predictive model for the water retention curve of deformable clayey soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(9): 1121-1132. doi: 10.1061/(ASCE)1090-0241(2006)132:9(1121)
|
[8] |
ARYA L M, PARIS J F. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J]. Soil Science Society of America Journal, 1981, 45(6): 1023-1030. doi: 10.2136/sssaj1981.03615995004500060004x
|
[9] |
刘士雨, 俞缙, 蔡燕燕, 等. 基于土壤物理特性扩展技术的土水特征曲线预测方法[J]. 岩土工程学报, 2017, 39(5): 924-931. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705024.htm
LIU Shi-yu, YU Jin, CAI Yan-yan, et al. Prediction of soil water characteristic curve using physically based scaling technique[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 924-931. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705024.htm
|
[10] |
SIMMS P H, YANFUL E K. Predicting soil-water characteristic curves of compacted plastic soils from measured pore size distributions[J]. Géotechnique, 2002, 52(4): 269-278. doi: 10.1680/geot.2002.52.4.269
|
[11] |
ABDUL-KAREEM E Z, SHAIMAA H F. Prediction of soil water characteristic curve using artificial neural network: a new approach[J]. MATEC Web of Conferences, 2018, 162: 01014. doi: 10.1051/matecconf/201816201014
|
[12] |
TAO G L, CHEN Y, XIAO H L, et al. Determining soil-water characteristic curves from mercury intrusion porosimeter test data using fractal theory[J]. Energies, 2019, 12(4): 752. doi: 10.3390/en12040752
|
[13] |
KONG L W, TAN L R. A simple method of determining the soil-water characteristic curve indirectly[C]//1st Asian Conference on Unsaturated Soils, 2000, Singapore.
|
[14] |
王磊. 土水特征曲线滞回特性的影响因素研究[D]. 西安: 西安理工大学, 2013.
WANG Lei. Research on Influencing Factors of Hysteretic Characteristics of Soil-Water Characteristic Curve[D]. Xi'an: Xi'an University of Technology, 2013. (in Chinese)
|
[15] |
辛志宇, 谭晓慧, 王雪, 等. 膨胀土增湿过程中吸力-孔隙比-含水率关系[J]. 岩土工程学报, 2015, 37(7): 1195-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507005.htm
XIN Zhi-yu, TAN Xiao-hui, WANG Xue, et al. Relationship among suction, void ratio and water content of expansive soils during wetting process[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1195-1203. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507005.htm
|
[16] |
土的工程分类标准:GB/T 50145—2007[S]. 2008.
Standard of Engineering Classification of Soil: GB/T 50145—2007[S]. 2008. (in Chinese)
|
[17] |
土工试验方法标准:GB/T 50123—2019[S]. 2019.
Standard for Soil Test Method: GB/T 50123—2019[S]. 2019. (in Chinese)
|
[18] |
李芃. 合肥市非饱和黏土的空间变异性研究[D]. 合肥: 合肥工业大学, 2016.
LI Peng. Assessment of Spatial Variability of Unsaturated Clay in Hefei[D]. Hefei: Hefei University orf Technology, 2016. (in Chinese)
|
[19] |
蔡国庆, 张策, 李舰, 等. 考虑初始干密度影响的SWCC预测方法研究[J]. 岩土工程学报, 2018, 20(增刊2): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2008.htm
CAI Guo-qing, ZHANG Ce, LI Jian, et al. Prediction method for SWCC considering initial dry density[J]. Chinese Journal of Geotechnical Engineering, 2018, 20(S2): 27-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2008.htm
|
[20] |
VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
|
[21] |
叶为民, 白云, 金麒, 等. 上海软土土水特征的室内试验研究[J]. 岩土工程学报, 2006, 28(2): 260-263. doi: 10.3321/j.issn:1000-4548.2006.02.022
YE Wei-min, BAI Yun, JIN Qi, et al. Lab experimental study on soil-water characteristics of Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 260-263. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.02.022
|
[22] |
LU N, LIKOS W J. 非饱和土力学[M]. 韦昌富, 侯龙, 简文星,译. 北京: 高等教育出版社, 2012.
LU N, LIKOS W J. Unsaturated Soil Mechanics[M]. WEI Chang-fu, HOU Long, JIAN Wen-xing, trans. Beijing: Higher Education Press, 2012. (in Chinese)
|
[23] |
Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper: ASTM D5298—16[S]. 2016.
|
[24] |
徐捷, 王钊, 李未显. 非饱和土的吸力量测技术[J]. 岩石力学与工程学报, 2000, 19(增刊1): 905-909. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2000S1017.htm
XU Jie, WANG Zhao, LI Wei-xian. Suction force measurement technology of unsaturated soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(S1): 905-909. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2000S1017.htm
|
[25] |
白福青, 刘斯宏, 袁骄. 滤纸法测定南阳中膨胀土土水特征曲线试验研究[J]. 岩土工程学报, 2011, 33(6): 928-933.
BAI Fu-qing, LIU Si-hong, YUAN Jiao. Measurement of SWCC of Nanyang expansive soil using the filter paper method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 928-933. (in Chinese)
|
[26] |
谭罗荣. 岩土材料孔径分布测试结果的修正[J]. 岩土力学, 2002, 23(3): 263-267. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200203001.htm
TAN Luo-rong. Modification of measured results of pore size distribution for geomaterials[J]. Rock and Soil Mechanics, 2002, 23(3): 263-267. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200203001.htm
|
[27] |
SASANIAN S, NEWSON T A. Use of mercury intrusion porosimetry for microstructural investigation of reconstituted clays at high water contents[J]. Engineering Geology, 2013, 158: 15-22.
|
[28] |
汪贤恩. 合肥地区非饱和膨胀土收缩性质和微观特性的试验研究[D]. 合肥: 合肥工业大学, 2015.
WANG Xian-en. Research on Shrinkage Properties and Microscopic Characteristics of the Unsaturated Expansive Soil in Hefei District[D]. Hefei: Hefei University of Technology, 2015. (in Chinese)
|
[29] |
FREDLUND D G, RAHARDJO H. Soil Mechanics for Unsaturated Soils[M]. New York: John Wiley & Sons, 1993.
|
[30] |
吴家琦. 快速测定土水特征曲线 方法试验与模型研究[D]. 石家庄: 华北水利水电大学, 2019.
WU Jia-qi. Experimental and Model Study on Rapid Determination of Soil Water Characteristic Curves[D]. Shijiazhuang: North China University of Water Resources and Electric Power, 2019. (in Chinese)
|
[31] |
闫小庆, 房营光, 张平. 膨润土对土体微观孔隙结构特征影响的试验研究[J]. 岩土工程学报, 2011, 33(8): 1302-1307. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108028.htm
YAN Xiao-qing, FANG Ying-guang, ZHANG Ping. Experiment study on the effects of bentonite on the micropore structure characteristics of soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1302-1307. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108028.htm
|
[1] | JIAN Tao, KONG Ling-wei, BAI Wei, WANG Jun-tao, LIU Bing-heng. Experimental study on effects of water content on small-strain shear modulus of undisturbed loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 160-165. DOI: 10.11779/CJGE2022S1029 |
[2] | LIU Bing-heng, KONG Ling-wei, SHU Rong-jun, LI Tian-guo, JIAN Tao. Characteristics of small-strain shear modulus of Zhanjiang clay under influence of inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 19-22. DOI: 10.11779/CJGE2021S2005 |
[3] | HOU Tian-shun, CUI Yi-xiang. Dynamic deformation characteristics and modified Hardin-Drnevich model for light weight soil mixed with EPS particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1602-1611. DOI: 10.11779/CJGE202109004 |
[4] | XIE Jun, BAO Shu-xian, HU Ying-fei, NI Ya-jing, LI Yan-tao. Design and experimental research on model soils used for shaking table tests of superstructure-soil-tunnel interaction system[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 476-485. DOI: 10.11779/CJGE202003009 |
[5] | CHENG Ke, MIAO Yu. Effects of loess content on dynamic shear modulus and damping ratio of Taiyuan sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 69-72. DOI: 10.11779/CJGE2019S2018 |
[6] | LIU Xin, LI Sa, LIU Xiao-long, CHEN Wen-wei. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. DOI: 10.11779/CJGE201909024 |
[7] | BAI Li-dong, XIANG Wei, SAVIDIS A Stavros RACKWITZ Frank, SAVIDIS A Stavros RACKWITZ Frank. Resonant column and bender element tests on maximum shear modulus of dry sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 184-188. |
[8] | CHI Shichun, GUO Xiaoxia, YANG Jun, LIN Gao. Small strain characteristics and threshold strain of dynamic Hardin-Drnevich model for soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 243-249. |
[9] | YUAN Xiaoming, SUN Jing. Model of maximum dynamic shear modulus of sand under anisotropic consolidation and revision of Hardin’s formula[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 264-269. |
[10] | Shi Zhaoji, Feng Wanling, Zhang Zhanji. The Measurement of Dynamic Young's Modulus by Resonant Column Method[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(6): 25-32. |
1. |
倪小东,张宇科,陆江发,崔允亮. 地层局部沉陷诱发有压管道渗透侵蚀机制研究. 华中科技大学学报(自然科学版). 2025(02): 17-24 .
![]() | |
2. |
王晓璞,赵海龙,任玲玲,高岩岩,薛东兴,山河,王斌,姚传进,赵建,白英睿. 结合人工智能图像识别的微塑料运移与滞留微观可视化实验方法. 实验技术与管理. 2025(04): 14-19 .
![]() | |
3. |
梁越,冉裕星,许彬,张鑫强,何慧汝. 细颗粒含量影响渗流侵蚀规律的细观机理研究. 岩土工程学报. 2025(05): 1099-1106 .
![]() | |
4. |
施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 .
![]() | |
5. |
刘江涛,李存军,于江华,张彦红,张春彬,孔纲强. 施工顺序对微型钢管桩加固既有基础变形的影响试验研究. 土木与环境工程学报(中英文). 2024(04): 100-108 .
![]() | |
6. |
梁越,何慧汝,许彬,张鑫强,冉裕星. 基于透明土的水力梯度对渗流侵蚀影响试验研究. 河海大学学报(自然科学版). 2024(05): 60-66 .
![]() | |
7. |
徐春瑞,郭畅,黄博. 孔隙率对砂土渗透稳定性影响的内部可视化研究. 地基处理. 2024(05): 451-462 .
![]() | |
8. |
王宇,陈从建,钱声源,段祥宝,谷艳昌. 可视化渗透破坏实验装置研发及土力学实践探索. 力学与实践. 2023(01): 193-199 .
![]() | |
9. |
周峙,罗易,张家铭,孙狂飙. 考虑裂隙面积率的裂隙性黏土优势流双域入渗规律研究. 安全与环境工程. 2023(02): 109-118 .
![]() | |
10. |
李敏,齐振霄,姚昕妤,赵博华,李琦. 基于可视角度下重金属污染物在介质中的迁移规律. 环境工程学报. 2023(04): 1303-1312 .
![]() | |
11. |
马朝阳,任杰,南胜豪,徐松. 土石堤坝渗漏病险试验装置的研制及初步应用. 岩土工程学报. 2023(11): 2268-2277 .
![]() | |
12. |
侯娟,滕宇阳,李昊,刘磊. 多孔介质曲折度对膨润土衬垫渗透性能的影响. 湖南大学学报(自然科学版). 2022(01): 155-164 .
![]() | |
13. |
梁越,代磊,魏琦. 基于透明土和粒子示踪技术的渗流侵蚀试验研究. 岩土工程学报. 2022(06): 1133-1140 .
![]() | |
14. |
顾展飞,田光辉,王栩硕,于文搏. 地下管线渗漏对粉土地面塌陷过程的影响及实验研究. 科技创新与应用. 2022(25): 61-64 .
![]() | |
15. |
杜建明,房倩,刘翔,海路. 透明土物理模拟试验技术现状与趋势. 科学技术与工程. 2021(03): 852-861 .
![]() | |
16. |
谷敬云,罗玉龙,张兴杰,詹美礼,王媛,盛金昌. 基于平面激光诱导荧光的潜蚀可视化试验装置及其初步应用. 岩石力学与工程学报. 2021(06): 1287-1296 .
![]() | |
17. |
冷先伦,王川,庞荣,盛谦. 透明胶结土材料强度特性的试验研究. 岩土力学. 2021(08): 2059-2068+2077 .
![]() | |
18. |
赵宽耀,许强,刘方洲,张先林. 黄土中优势通道渗流特征研究. 岩土工程学报. 2020(05): 941-950 .
![]() |