• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, ZHA Fu-sheng, XU Long. Prediction of soil-water characteristic curve based on pore size distribution of soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691-1699. DOI: 10.11779/CJGE202109014
Citation: FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, ZHA Fu-sheng, XU Long. Prediction of soil-water characteristic curve based on pore size distribution of soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691-1699. DOI: 10.11779/CJGE202109014

Prediction of soil-water characteristic curve based on pore size distribution of soils

More Information
  • Received Date: November 26, 2020
  • Available Online: December 02, 2022
  • The soil-water characteristic curve (SWCC) is an important curve describing the relationship between the suction of unsaturated soils and the saturation or water content, and is an important basis for analyzing the strength, deformation and seepage of unsaturated soils. It is very time-consuming to measure soil suction directly or indirectly indoors. In order to quickly and accurately obtain the SWCC of unsaturated soils, an improved method for predicting SWCC based on the pore size distribution (PSD) of soils is proposed. This method uses the mercury intrusion porosimetry (MIP) to measure the PSD of soils, and the filter paper method is used to measure a suction value of soil samples and its corresponding saturation. Then according to the test results at this point, the pore volume of soils measured by the MIP tests is corrected, and the pore volume after correction is used to calculate the saturation of soils under different suction conditions. This method can overcome the problem of small pore volume measured by the MIP tests. The comparative analysis of the predicted and measured SWCCs before and after the correction of 9 groups of soil samples shows that the proposed method can predict the SWCC of unsaturated soils more accurately. On this basis, the fitting parameters of SWCC and their probability statistical characteristics of multiple groups of soils can be obtained conveniently and quickly.
  • [1]
    FREDLUND D G, HOUSTON S L. Protocol for the assessment of unsaturated properties in geotechnical engineering practice[J]. Canadian Geotechnical Journal, 2009, 46: 694-707. doi: 10.1139/T09-010
    [2]
    NAM S, GUTIERREZ M, DIPLAS P, et al. Comparison of testing techniques and models for establishing the SWCC of riverbank soils[J]. Engineering Geology, 2009, 110: 1-10.
    [3]
    ZHANG Y W, SONG Z P, WENG X L, et al. A new soil-water characteristic curve model for unsaturated loess based on wetting-induced pore deformation[J]. Geoflfluids, 2019(3): 1-14.
    [4]
    JOHARI A, HABIBAGAHI G, GHAHRAMANI A. Prediction of soil-water characteristic curve using genetic programming[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 661-665. doi: 10.1061/(ASCE)1090-0241(2006)132:5(661)
    [5]
    AUBERTIN M, RICARD J F, CHAPUIS R P. A predictive model for the water retention curve: application to tailings from hard-rock mines[J]. Canadian Geotechnical Journal, 1998, 35(1): 55-69. doi: 10.1139/t97-080
    [6]
    AUBERTIN M, MBONIMPA M, BUSSIÈRE B, et al. A model to predict the water retention curve from basic geotechnical properties[J]. Canadian Geotechnical Journal, 2003, 40(6): 1104-1122. doi: 10.1139/t03-054
    [7]
    MBONIMPA M, AUBERTIN M, MAQSOUD A, et al. Predictive model for the water retention curve of deformable clayey soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(9): 1121-1132. doi: 10.1061/(ASCE)1090-0241(2006)132:9(1121)
    [8]
    ARYA L M, PARIS J F. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J]. Soil Science Society of America Journal, 1981, 45(6): 1023-1030. doi: 10.2136/sssaj1981.03615995004500060004x
    [9]
    刘士雨, 俞缙, 蔡燕燕, 等. 基于土壤物理特性扩展技术的土水特征曲线预测方法[J]. 岩土工程学报, 2017, 39(5): 924-931. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705024.htm

    LIU Shi-yu, YU Jin, CAI Yan-yan, et al. Prediction of soil water characteristic curve using physically based scaling technique[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 924-931. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705024.htm
    [10]
    SIMMS P H, YANFUL E K. Predicting soil-water characteristic curves of compacted plastic soils from measured pore size distributions[J]. Géotechnique, 2002, 52(4): 269-278. doi: 10.1680/geot.2002.52.4.269
    [11]
    ABDUL-KAREEM E Z, SHAIMAA H F. Prediction of soil water characteristic curve using artificial neural network: a new approach[J]. MATEC Web of Conferences, 2018, 162: 01014. doi: 10.1051/matecconf/201816201014
    [12]
    TAO G L, CHEN Y, XIAO H L, et al. Determining soil-water characteristic curves from mercury intrusion porosimeter test data using fractal theory[J]. Energies, 2019, 12(4): 752. doi: 10.3390/en12040752
    [13]
    KONG L W, TAN L R. A simple method of determining the soil-water characteristic curve indirectly[C]//1st Asian Conference on Unsaturated Soils, 2000, Singapore.
    [14]
    王磊. 土水特征曲线滞回特性的影响因素研究[D]. 西安: 西安理工大学, 2013.

    WANG Lei. Research on Influencing Factors of Hysteretic Characteristics of Soil-Water Characteristic Curve[D]. Xi'an: Xi'an University of Technology, 2013. (in Chinese)
    [15]
    辛志宇, 谭晓慧, 王雪, 等. 膨胀土增湿过程中吸力-孔隙比-含水率关系[J]. 岩土工程学报, 2015, 37(7): 1195-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507005.htm

    XIN Zhi-yu, TAN Xiao-hui, WANG Xue, et al. Relationship among suction, void ratio and water content of expansive soils during wetting process[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1195-1203. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507005.htm
    [16]
    土的工程分类标准:GB/T 50145—2007[S]. 2008.

    Standard of Engineering Classification of Soil: GB/T 50145—2007[S]. 2008. (in Chinese)
    [17]
    土工试验方法标准:GB/T 50123—2019[S]. 2019.

    Standard for Soil Test Method: GB/T 50123—2019[S]. 2019. (in Chinese)
    [18]
    李芃. 合肥市非饱和黏土的空间变异性研究[D]. 合肥: 合肥工业大学, 2016.

    LI Peng. Assessment of Spatial Variability of Unsaturated Clay in Hefei[D]. Hefei: Hefei University orf Technology, 2016. (in Chinese)
    [19]
    蔡国庆, 张策, 李舰, 等. 考虑初始干密度影响的SWCC预测方法研究[J]. 岩土工程学报, 2018, 20(增刊2): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2008.htm

    CAI Guo-qing, ZHANG Ce, LI Jian, et al. Prediction method for SWCC considering initial dry density[J]. Chinese Journal of Geotechnical Engineering, 2018, 20(S2): 27-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2008.htm
    [20]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [21]
    叶为民, 白云, 金麒, 等. 上海软土土水特征的室内试验研究[J]. 岩土工程学报, 2006, 28(2): 260-263. doi: 10.3321/j.issn:1000-4548.2006.02.022

    YE Wei-min, BAI Yun, JIN Qi, et al. Lab experimental study on soil-water characteristics of Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 260-263. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.02.022
    [22]
    LU N, LIKOS W J. 非饱和土力学[M]. 韦昌富, 侯龙, 简文星,译. 北京: 高等教育出版社, 2012.

    LU N, LIKOS W J. Unsaturated Soil Mechanics[M]. WEI Chang-fu, HOU Long, JIAN Wen-xing, trans. Beijing: Higher Education Press, 2012. (in Chinese)
    [23]
    Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper: ASTM D5298—16[S]. 2016.
    [24]
    徐捷, 王钊, 李未显. 非饱和土的吸力量测技术[J]. 岩石力学与工程学报, 2000, 19(增刊1): 905-909. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2000S1017.htm

    XU Jie, WANG Zhao, LI Wei-xian. Suction force measurement technology of unsaturated soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(S1): 905-909. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2000S1017.htm
    [25]
    白福青, 刘斯宏, 袁骄. 滤纸法测定南阳中膨胀土土水特征曲线试验研究[J]. 岩土工程学报, 2011, 33(6): 928-933.

    BAI Fu-qing, LIU Si-hong, YUAN Jiao. Measurement of SWCC of Nanyang expansive soil using the filter paper method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 928-933. (in Chinese)
    [26]
    谭罗荣. 岩土材料孔径分布测试结果的修正[J]. 岩土力学, 2002, 23(3): 263-267. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200203001.htm

    TAN Luo-rong. Modification of measured results of pore size distribution for geomaterials[J]. Rock and Soil Mechanics, 2002, 23(3): 263-267. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200203001.htm
    [27]
    SASANIAN S, NEWSON T A. Use of mercury intrusion porosimetry for microstructural investigation of reconstituted clays at high water contents[J]. Engineering Geology, 2013, 158: 15-22.
    [28]
    汪贤恩. 合肥地区非饱和膨胀土收缩性质和微观特性的试验研究[D]. 合肥: 合肥工业大学, 2015.

    WANG Xian-en. Research on Shrinkage Properties and Microscopic Characteristics of the Unsaturated Expansive Soil in Hefei District[D]. Hefei: Hefei University of Technology, 2015. (in Chinese)
    [29]
    FREDLUND D G, RAHARDJO H. Soil Mechanics for Unsaturated Soils[M]. New York: John Wiley & Sons, 1993.
    [30]
    吴家琦. 快速测定土水特征曲线 方法试验与模型研究[D]. 石家庄: 华北水利水电大学, 2019.

    WU Jia-qi. Experimental and Model Study on Rapid Determination of Soil Water Characteristic Curves[D]. Shijiazhuang: North China University of Water Resources and Electric Power, 2019. (in Chinese)
    [31]
    闫小庆, 房营光, 张平. 膨润土对土体微观孔隙结构特征影响的试验研究[J]. 岩土工程学报, 2011, 33(8): 1302-1307. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108028.htm

    YAN Xiao-qing, FANG Ying-guang, ZHANG Ping. Experiment study on the effects of bentonite on the micropore structure characteristics of soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1302-1307. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108028.htm
  • Related Articles

    [1]JIAN Tao, KONG Ling-wei, BAI Wei, WANG Jun-tao, LIU Bing-heng. Experimental study on effects of water content on small-strain shear modulus of undisturbed loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 160-165. DOI: 10.11779/CJGE2022S1029
    [2]LIU Bing-heng, KONG Ling-wei, SHU Rong-jun, LI Tian-guo, JIAN Tao. Characteristics of small-strain shear modulus of Zhanjiang clay under influence of inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 19-22. DOI: 10.11779/CJGE2021S2005
    [3]HOU Tian-shun, CUI Yi-xiang. Dynamic deformation characteristics and modified Hardin-Drnevich model for light weight soil mixed with EPS particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1602-1611. DOI: 10.11779/CJGE202109004
    [4]XIE Jun, BAO Shu-xian, HU Ying-fei, NI Ya-jing, LI Yan-tao. Design and experimental research on model soils used for shaking table tests of superstructure-soil-tunnel interaction system[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 476-485. DOI: 10.11779/CJGE202003009
    [5]CHENG Ke, MIAO Yu. Effects of loess content on dynamic shear modulus and damping ratio of Taiyuan sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 69-72. DOI: 10.11779/CJGE2019S2018
    [6]LIU Xin, LI Sa, LIU Xiao-long, CHEN Wen-wei. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. DOI: 10.11779/CJGE201909024
    [7]BAI Li-dong, XIANG Wei, SAVIDIS A Stavros RACKWITZ Frank, SAVIDIS A Stavros RACKWITZ Frank. Resonant column and bender element tests on maximum shear modulus of dry sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 184-188.
    [8]CHI Shichun, GUO Xiaoxia, YANG Jun, LIN Gao. Small strain characteristics and threshold strain of dynamic Hardin-Drnevich model for soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 243-249.
    [9]YUAN Xiaoming, SUN Jing. Model of maximum dynamic shear modulus of sand under anisotropic consolidation and revision of Hardin’s formula[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 264-269.
    [10]Shi Zhaoji, Feng Wanling, Zhang Zhanji. The Measurement of Dynamic Young's Modulus by Resonant Column Method[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(6): 25-32.
  • Cited by

    Periodical cited type(18)

    1. 倪小东,张宇科,陆江发,崔允亮. 地层局部沉陷诱发有压管道渗透侵蚀机制研究. 华中科技大学学报(自然科学版). 2025(02): 17-24 .
    2. 王晓璞,赵海龙,任玲玲,高岩岩,薛东兴,山河,王斌,姚传进,赵建,白英睿. 结合人工智能图像识别的微塑料运移与滞留微观可视化实验方法. 实验技术与管理. 2025(04): 14-19 .
    3. 梁越,冉裕星,许彬,张鑫强,何慧汝. 细颗粒含量影响渗流侵蚀规律的细观机理研究. 岩土工程学报. 2025(05): 1099-1106 . 本站查看
    4. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 .
    5. 刘江涛,李存军,于江华,张彦红,张春彬,孔纲强. 施工顺序对微型钢管桩加固既有基础变形的影响试验研究. 土木与环境工程学报(中英文). 2024(04): 100-108 .
    6. 梁越,何慧汝,许彬,张鑫强,冉裕星. 基于透明土的水力梯度对渗流侵蚀影响试验研究. 河海大学学报(自然科学版). 2024(05): 60-66 .
    7. 徐春瑞,郭畅,黄博. 孔隙率对砂土渗透稳定性影响的内部可视化研究. 地基处理. 2024(05): 451-462 .
    8. 王宇,陈从建,钱声源,段祥宝,谷艳昌. 可视化渗透破坏实验装置研发及土力学实践探索. 力学与实践. 2023(01): 193-199 .
    9. 周峙,罗易,张家铭,孙狂飙. 考虑裂隙面积率的裂隙性黏土优势流双域入渗规律研究. 安全与环境工程. 2023(02): 109-118 .
    10. 李敏,齐振霄,姚昕妤,赵博华,李琦. 基于可视角度下重金属污染物在介质中的迁移规律. 环境工程学报. 2023(04): 1303-1312 .
    11. 马朝阳,任杰,南胜豪,徐松. 土石堤坝渗漏病险试验装置的研制及初步应用. 岩土工程学报. 2023(11): 2268-2277 . 本站查看
    12. 侯娟,滕宇阳,李昊,刘磊. 多孔介质曲折度对膨润土衬垫渗透性能的影响. 湖南大学学报(自然科学版). 2022(01): 155-164 .
    13. 梁越,代磊,魏琦. 基于透明土和粒子示踪技术的渗流侵蚀试验研究. 岩土工程学报. 2022(06): 1133-1140 . 本站查看
    14. 顾展飞,田光辉,王栩硕,于文搏. 地下管线渗漏对粉土地面塌陷过程的影响及实验研究. 科技创新与应用. 2022(25): 61-64 .
    15. 杜建明,房倩,刘翔,海路. 透明土物理模拟试验技术现状与趋势. 科学技术与工程. 2021(03): 852-861 .
    16. 谷敬云,罗玉龙,张兴杰,詹美礼,王媛,盛金昌. 基于平面激光诱导荧光的潜蚀可视化试验装置及其初步应用. 岩石力学与工程学报. 2021(06): 1287-1296 .
    17. 冷先伦,王川,庞荣,盛谦. 透明胶结土材料强度特性的试验研究. 岩土力学. 2021(08): 2059-2068+2077 .
    18. 赵宽耀,许强,刘方洲,张先林. 黄土中优势通道渗流特征研究. 岩土工程学报. 2020(05): 941-950 . 本站查看

    Other cited types(11)

Catalog

    Article views PDF downloads Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return