• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIN Gao, LI Zhi-yuan, LI Jian-bo. Dynamic soil-structure interaction under complex soil environment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1573-1580. DOI: 10.11779/CJGE202109001
Citation: LIN Gao, LI Zhi-yuan, LI Jian-bo. Dynamic soil-structure interaction under complex soil environment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1573-1580. DOI: 10.11779/CJGE202109001

Dynamic soil-structure interaction under complex soil environment

More Information
  • Received Date: December 17, 2020
  • Available Online: December 02, 2022
  • The dynamic soil-structure interaction (SSI) analysis is of great significance to the earthquake safety evaluation of infrastructures, such as dams, bridges, nuclear power structures, etc. The state of the art and the current design practice of SSI analysis are briefly reviewed. It is worth to mention that after the 2011 accident of Fukushima Nuclear Power Plant in Japan, the international demand for the earthquake safety of nuclear power structures has been raised. Hence, it is imperative to develop more advanced appropriate computational models for the safety evaluation of the important structures. For this purpose, a novel SSI analysis model under complex soil environment is proposed so that the influences of the inhomogeneities appearing in the near field of the structure including the layering of the half-space, the embedment of the foundation, the layout level of the foundation base, the existence of adjacent structures, the nearly soft geologic inclusions, the irregular interfaces between the layers can be easily and conveniently taken into consideration without additional effort. As a result, the computation can be more accurate and efficient. Numerical examples are provided to validate the effectiveness of the proposed approach.
  • [1]
    KAUSEL E. Early history of soil-structure interaction[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(9): 822-832. doi: 10.1016/j.soildyn.2009.11.001
    [2]
    GAZETAS G. Analysis of machine foundation vibrations: state of the art[J]. International Journal of Soil Dynamics and Earthquake Engineering, 1983, 2(1): 2-42. doi: 10.1016/0261-7277(83)90025-6
    [3]
    LAMB H. On the Propagation of tremors over the surface of an elastic solid[J]. Philosophical Transactions of the Royal Society of London, Series A, 1904, 203: 1-42. doi: 10.1098/rsta.1904.0013
    [4]
    MINDLIN R D. Force at a point in the interior of a semi- infinite solid[J]. Physics, 1936, 7(5): 195-202. doi: 10.1063/1.1745385
    [5]
    REISSNER E. Stationäre, axialsymmetrische, durch eine schüttelnde Masse erregte Schwingungen eines homogenen elastischen Halbraumes[J]. Ingenieur-Archiv, 1936, 7(6): 381-396. doi: 10.1007/BF02090427
    [6]
    AS U V, YT U W. Lateral and rocking vibration of footings[J]. ASCE, J Soil Mech Found Div, 1971, 97(SM9): 1227-1248.
    [7]
    LUCO J E, WESTMANN R A. Dynamic response of circular footings[J]. Journal of Engineering Mechanics, ASCE, 1971, 97: 1381-1395.
    [8]
    LUCO J E, WESTMANN R A. Dynamic response of a rigid footing bonded to an elastic half space[J]. Journal of Applied Mechanics, 1972, 39(2): 527-534. doi: 10.1115/1.3422711
    [9]
    HADJIAN A H, TSENG W S, et al. The learning from the large scale Lotung soil-structure interaction experiments[C]//Proc. Second International Conference on Recent Advances in Geothechnial Earthquake Engineering and Soil Dynamics, 1991.
    [10]
    井口道雄. 大型模型による原子炉建屋と地盤の動的相互作用試験[C]//日本建築学会大会学術講演梗概集,1984-1987, 东京.

    MICHIO I. Dynamic interaction test between reactor building and ground using a large model[C]//Summary of Academic Lectures at the Architectural Society of Japan Conference, 1984-1987, Tokyo. (in Chinese)
    [11]
    Seismic Analysis of Safety-Related Nuclear Structures: ASCE Standard/SEI 4-16[S]. 2016.
    [12]
    Seismic Analysis of Safety-Related Nuclear Structures: ASCE Standard/SEI 4-98[S]. 1998.
    [13]
    KAUSEL E. Local transmitting boundaries[J]. Journal of Engineering Mechanics, ASCE, 1988, 114(6): 1011-1027. doi: 10.1061/(ASCE)0733-9399(1988)114:6(1011)
    [14]
    WOLF J P. A comparison of time‐domain transmitting boundaries[J]. Earthquake Engineering & Structural Dynamics, 1986, 14(4): 655-673.
    [15]
    DEEKS A J, RANDOLPH M F. Axisymmetric time-domain transmitting boundaries[J]. Journal of Engineering Mechanics, 1994, 120(1): 25-42. doi: 10.1061/(ASCE)0733-9399(1994)120:1(25)
    [16]
    刘晶波, 王振宇, 杜修力, 等. 波动问题中的三维时域黏弹性人工边界[J]. 工程力学, 2005, 22(6): 46-51. doi: 10.3969/j.issn.1000-4750.2005.06.008

    LIU Jing-bo, WANG Zhen-ning, DU Xiu-li, et al. Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems[J]. Engineering Mechanics, 2005, 22(6): 46-51. (in Chinese) doi: 10.3969/j.issn.1000-4750.2005.06.008
    [17]
    廖振鹏, 黄孔亮, 杨柏坡, 等. 暂态波透射边界[J]. 中国科学(A辑), 1984(6): 556-564. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK198406007.htm

    LIAO Zhen-peng, HUANG Kong-liang, YANG Bai-po, et al. Transient wave transmission boundary[J]. Science China (A), 1984(6): 556-564. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK198406007.htm
    [18]
    WOLF J P. Dynamic Soil-Structure Interaction[M]. Englewood Cliffs: Prentice Hall, 1985.
    [19]
    LIN G, HAN Z J, LU S, et al. Wave motion equation and the dynamic Green’s function for a transverse isotropic multilayered half-space[J]. Soils and Foundations, 2017, 57(3): 397-411. doi: 10.1016/j.sandf.2017.05.007
    [20]
    李志远. 复杂层状地基中的波动传播和地下结构地震响应的研究[D]. 大连: 大连理工大学, 2019.

    LI Zhi-yuan. The Research of Wave Propagation and Seismic Response of Underground Structure in Complex Layered Soil[D]. Dalian: Dalian University of Technology, 2019. (in Chinese)
    [21]
    RADMANOVIC B, KATZ C. A high performance scaled boundary finite element method[C]//IOP Conference Series: Materials Science and Engineering, 2010, IOP Publishing.
    [22]
    LIN G, LU S, LIU J. Transmitting boundary for transient analysis of wave propagation in layered media formulated based on acceleration unit-impulse response[J]. Soil Dynamics and Earthquake Engineering, 2016, 90: 494-509. doi: 10.1016/j.soildyn.2016.09.021
    [23]
    AI Z Y, ZHANG Y F. Plane strain dynamic response of a transversely isotropic multilayered half-plane[J]. Soil Dynamics and Earthquake Engineering, 2015, 75: 211-219. doi: 10.1016/j.soildyn.2015.04.010
    [24]
    DE BARROS F C P, ENRIQUE LUCO J. Amplification of obliquely incident waves by a cylindrical valley embedded in a layered half-space[J]. Soil Dynamics and Earthquake Engineering, 1995, 14(3): 163-175. doi: 10.1016/0267-7261(94)00047-K
  • Cited by

    Periodical cited type(21)

    1. 魏永杰,陈伟利. 纤维增强水泥土搅拌桩芯样的强度特征与本构模型. 水电能源科学. 2024(04): 103-106 .
    2. 朱彬,裴华富,杨庆,卢萌盟,王涛. 基于随机有限元法的波致海床响应概率分析. 岩土力学. 2023(05): 1545-1556 .
    3. 周文辉,肖宁,占辉,贺佐跃. 广州南沙某桥头路基处理方案对比及其工后沉降分析. 科技和产业. 2022(03): 370-376 .
    4. 陈利宏,杜军,唐灵敏,熊勃,姚嘉敏. 不同养护龄期下水泥掺入比对水泥土直剪特性的影响. 广东土木与建筑. 2022(05): 35-39 .
    5. 于晓夫. 公路施工质量控制与软土地基处理技术. 工程技术研究. 2022(10): 158-160 .
    6. 王涛,马骏,周国庆,许大晴,季雨坤. 冻土地层三维空间变异性表征及冻结帷幕温度特征值演化过程研究. 岩石力学与工程学报. 2022(10): 2094-2108 .
    7. 黄毫春,昌郑,吴春鹏,姚嘉敏,熊勃,刘飞禹. 纤维长度与掺量对加筋水泥土直剪特性的影响研究. 施工技术(中英文). 2022(21): 54-59 .
    8. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看
    9. 郑永胜,田盎然,尹鹏,范韬,刘浩宇,居俊,唐强. 复杂环境下超宽深大基坑设计与施工技术分析——以X352县道改扩建工程项目为例. 盐城工学院学报(自然科学版). 2021(01): 60-65 .
    10. 周禹暄,胡俊,林小淇,李珂,王志鑫. X型与圆形冻结管单管冻结温度场数值对比分析. 海南大学学报(自然科学版). 2021(02): 198-203 .
    11. 张新建,唐昌意,刘智. 淤泥水泥土室内配合比试验及成桩效果分析. 公路. 2021(06): 81-84 .
    12. 秦堃. 深厚软土地基联合加固技术模型试验研究. 粉煤灰综合利用. 2021(04): 35-39 .
    13. 张卫中,闫少峰,黄学军,何进江,康钦容. 有机粉质粘土灌注桩孔壁垮塌机理及控制研究. 武汉理工大学学报. 2021(05): 80-84+91 .
    14. 刘海桃,徐志豪,邵朝阳. 有机质对水泥改良红黏土的力学特性影响及微观机理分析. 土工基础. 2021(05): 645-648 .
    15. 周文辉,肖宁,贺佐跃. 广州南沙某路基桩帽下脱空机理分析. 河南科学. 2021(11): 1783-1789 .
    16. 马子鹏. 临江富水环境大型过江通道基坑降水施工关键技术研究. 居舍. 2020(29): 63-66+72 .
    17. 吴雨薇,胡俊,王志鑫,曾东灵,汪树成. 水下清淤人工冻结板温度场数值分析. 煤田地质与勘探. 2019(02): 168-176 .
    18. 黄磊,刘文博,吴雨薇,陈璐,胡俊. 南宁地铁东滨区间联络通道冻结法加固施工监测分析研究. 森林工程. 2019(06): 77-85 .
    19. 吴雨薇,刘文博,胡俊,王志鑫,曾东灵. 基于温度场分析的新型水下清淤装置数值研究. 水利水电技术. 2019(11): 103-109 .
    20. 胡俊,张皖湘,汪磊,刘文博,王志鑫. 防护网与液氮冻土墙复合基坑支护技术研究. 海南大学学报(自然科学版). 2019(04): 359-367 .
    21. 郑俊杰,乔雅晴,章荣军. 被动加固区参数变异性对软土深基坑变形行为的影响. 土木与环境工程学报(中英文). 2019(06): 1-8 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return