Citation: | WAN Yi, CHEN Guo-qing, SUN Xiang, ZHANG Guang-ze. Triaxial creep characteristics and damage model for red sandstone subjected to freeze-thaw cycles under different water contents[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1463-1472. DOI: 10.11779/CJGE202108011 |
[1] |
薛翊国, 孔凡猛, 杨为民, 等. 川藏铁路沿线主要不良地质条件与工程地质问题[J]. 岩石力学与工程学报, 2020, 39(3): 445-468. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003003.htm
XUE Yi-guo, KONG Fan-meng, YANG Wei-min, et al. Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(3): 445-468. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003003.htm
|
[2] |
陈卫忠, 谭贤君, 于洪丹, 等. 低温及冻融环境下岩体热、水、力特性研究进展与思考[J]. 岩石力学与工程学报, 2011, 30(7): 1318-1336. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201107005.htm
CHEN Wei-zhong, TAN Xian-jun, YU Hong-dan, et al. Advance and review on thermo- hydro-mechanical characteristics of rock mass under condition of low temperature and freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(7): 1318-1336. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201107005.htm
|
[3] |
PARK J, HYUN C U, PARK H D. Changes in microstructure and physical properties of rocks caused by artificial freeze-thaw action[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(2): 555-565. doi: 10.1007/s10064-014-0630-8
|
[4] |
KHANLARI G, ABDILOR Y. Influence of wet-dry, freeze-thaw, and heat-cool cycles on the physical and mechanical properties of upper red sandstones in central Iran[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(4): 1287-1300. doi: 10.1007/s10064-014-0691-8
|
[5] |
贾海梁, 项伟, 谭龙, 等. 砂岩冻融损伤机制的理论分析和试验验证[J]. 岩石力学与工程学报, 2016, 35(5): 879-895. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201605002.htm
JIA Hai-liang, XIANG Wei, TAN Long, et al. Theoretical analysis and experimental verifications of frost damage mechanism of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(5): 879-895. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201605002.htm
|
[6] |
韩铁林, 陈蕴生, 师俊平, 等. 冻融循环下钙质砂岩力学特性及其损伤劣化机制的试验研究[J]. 岩土工程学报, 2016, 38(10): 1802-1812. doi: 10.11779/CJGE201610009
HAN Tie-lin, CHEN Yun-sheng, SHI Jun-ping, et al. Experimental study on mechanical properties and damage degradation mechanism of calcareous sandstone subjected to freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1802-1812. (in Chinese) doi: 10.11779/CJGE201610009
|
[7] |
CHEN T C, YEUNG M R, MORI N. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J]. Cold Regions Science and Technology, 2004, 38(2/3): 127-136.
|
[8] |
王俐. 不同初始含水率红砂岩冻融损伤的试验研究及其机理分析[D]. 武汉: 中国科学院武汉岩土力学研究所, 2006.
WANG Li. Experimental Studies and Mechanism Analysis on Different Initial Water-Saturated Red Sandstones Under Condition of Frost and Thaw[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2006. (in Chinese)
|
[9] |
刘海康, 张思渊, 张鑫鑫. 不同初始含水率下砂岩冻融劣化特性试验研究[J]. 科学技术与工程, 2017, 17(26): 322-327. doi: 10.3969/j.issn.1671-1815.2017.26.054
LIU Hai-kang, ZHANG Si-yuan, ZHANG Xin-xin. Experimental study of freeze-thaw deterioration specialty of sandstone in different initial moisture content[J]. Science Technology and Engineering, 2017, 17(26): 322-327. (in Chinese) doi: 10.3969/j.issn.1671-1815.2017.26.054
|
[10] |
贺晶晶, 师俊平. 冻融后不同含水状态砂岩的剪切破坏特性[J]. 岩石力学与工程学报, 2018, 37(6): 1350-1358. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806004.htm
HE Jing-jing, SHI Jun-ping. Shear failure properties of sandstone with different moisture contents after cyclic freezing- thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1350-1358. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806004.htm
|
[11] |
王鹏, 许金余, 方新宇, 等. 红砂岩吸水软化及冻融循环力学特性劣化[J]. 岩土力学, 2018, 39(6): 2065-2072. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806019.htm
WANG Peng, XU Jin-yu, FANG Xin-yu, et al. Water softening and freeze-thaw cycling induced decay of red-sandstone[J]. Rock and Soil Mechanics, 2018, 39(6): 2065-2072. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806019.htm
|
[12] |
陈国庆, 郭帆, 王剑超, 等. 冻融后石英砂岩三轴蠕变特性试验研究[J]. 岩土力学, 2017, 38(增刊1): 203-210. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1030.htm
CHEN Guo-qing, GUO Fan, WANG Jian-chao, et al. Experimental study of creep properties of quartz sandstone after freezing-thawing cycles[J]. Rock and Soil Mechanics, 2017, 38(S1): 203-210. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1030.htm
|
[13] |
童庆闯. 冻融循环作用下炭质页岩蠕变损伤特性研究[D]. 长沙: 长沙理工大学, 2017.
TONG Qing-chuang. Study on Creep Damage Characteristics of Carbonaceous Shale under Freezing and Thawing[D]. Changsha: Changsha University of Science & Technology, 2017. (in Chinese)
|
[14] |
杨秀荣, 姜谙男, 王善勇, 等. 冻融循环条件下片麻岩蠕变特性试验研究[J]. 岩土力学, 2019, 40(11): 4331-4340. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911024.htm
YANG Xiu-rong, JIANG An-nan, WANG Shan-yong, et al. Experimental study on creep characteristics of gneiss under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2019, 40(11): 4331-4340. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911024.htm
|
[15] |
张峰瑞, 姜谙男, 杨秀荣, 等. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002022.htm
ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong, et al. Experimental and model research on shear creep of granite under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2020, 41(2): 509-519. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002022.htm
|
[16] |
杨圣奇, 徐卫亚, 杨松林. 龙滩水电站泥板岩剪切流变力学特性研究[J]. 岩土力学, 2007, 28(5): 895-902. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200705008.htm
YANG Sheng-qi, XU Wei-ya, YANG Song-lin. Investigation on shear rheological mechanical properties of shale in Longtan Hydropower Project[J]. Rock and Soil Mechanics, 2007, 28(5): 895-902. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200705008.htm
|
[17] |
王来贵, 赵娜, 何峰, 等. 岩石蠕变损伤模型及其稳定性分析[J]. 煤炭学报, 2009, 34(1): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200901014.htm
WANG Lai-gui, ZHAO Na, HE Feng, et al. Rock creep damage model and its stability analysis[J]. Journal of China Coal Society, 2009, 34(1): 64-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200901014.htm
|
[18] |
杨圣奇, 徐鹏. 一种新的岩石非线性流变损伤模型研究[J]. 岩土工程学报, 2014, 36(10): 1846-1854. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201410016.htm
YANG Sheng-qi, XU Peng. A new nonlinear rheological damage model for rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1846-1854. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201410016.htm
|
[19] |
赵延林, 唐劲舟, 付成成, 等. 岩石黏弹塑性应变分离的流变试验与蠕变损伤模型[J]. 岩石力学与工程学报, 2016, 35(7): 1297-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607001.htm
ZHAO Yan-lin, TANG Jin-zhou, FU Cheng-cheng, et al. Rheological test of separation between viscoelastic-plastic strains and creep damage model[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1297-1308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607001.htm
|
[20] |
申艳军, 杨更社, 荣腾龙, 等. 岩石冻融循环试验建议性方案探讨[J]. 岩土工程学报, 2016, 38(10): 1775-1782. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201610006.htm
SHEN Yan-jun, YANG Geng-she, RONG Teng-long, et al. Proposed scheme for freeze-thaw cycle tests on rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1775-1782. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201610006.htm
|
[21] |
武东生, 孟陆波, 李天斌, 等. 灰岩三轴高温后效流变特性及长期强度研究[J]. 岩土力学, 2016, 37(增刊1): 183-191.
WU Dong-sheng, MENG Lu-bo, LI Tian-bin, et al. Study of triaxial rheological property and long-term strength of limestone after high temperature[J]. Rock and Soil Mechanics, 2016, 37(S1): 183-191. (in Chinese)
|
[22] |
许宏发. 软岩强度和弹模的时间效应[J]. 岩石力学与工程学报, 1997, 16(3): 246-251. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX703.006.htm
XU Hong-fa. Time-dependent behaviours of strength and elasticity modulus of weak rock[J]. Chinese Journal of Rock Mechanical and Engineering, 1997, 16(3): 246-251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX703.006.htm
|
1. |
高猛,何恩光,周鹏,田淞文. 盾构机切桩对主轴承载荷及寿命的影响. 轴承. 2025(05): 1-7 .
![]() | |
2. |
王德福. 盾构滚刀切削桩基相互作用机理及关键参数分析研究——以海珠湾盾构隧道为例. 现代隧道技术. 2024(01): 216-228 .
![]() | |
3. |
张锟,徐前卫,孙庆文,薛海儒,来守玺. 地铁盾构下穿高层建筑基础的扰动变形影响与实测研究. 城市轨道交通研究. 2024(04): 129-135 .
![]() | |
4. |
乔世范,张睿,王广,王刚,陈道龙,张喆. 砾砂地层盾构切削大直径群桩的刀具研究. 铁道科学与工程学报. 2024(05): 1966-1978 .
![]() | |
5. |
丁小彬,杨辉泰,施钰. EPB盾构刀盘泥饼成因分析及评价模型构建. 华南理工大学学报(自然科学版). 2024(05): 71-83 .
![]() | |
6. |
陈一凡,黄书华,沈翔,盛健,陈湘生,张良. 密集城区超大直径盾构切削群桩对上部建筑物振动影响规律分析. 现代隧道技术. 2024(03): 266-275 .
![]() | |
7. |
周广铁,朱利,高文宪,侯邦,朱睿琦,李娇蓉. 盾构滚刀切削钢筋混凝土桩基影响规律研究. 江西建材. 2024(06): 243-245 .
![]() | |
8. |
韩强,张旭,成铭,胡军勇,谢开晋. 地铁盾构下穿既有车站直接磨桩技术研究. 工程建设与设计. 2024(17): 186-189 .
![]() | |
9. |
白建军,彭凯西,吴奔,梁嘉骏. 盾构直接切削钢筋混凝土桥基引起的变形分析. 现代隧道技术. 2024(S1): 445-453 .
![]() | |
10. |
赵立锋,郭伟,胡适韬,程传过. 盾构穿越既有车站结构地下连续墙施工关键技术研究. 现代隧道技术. 2024(S1): 996-1001 .
![]() | |
11. |
刘欣然,高伟琪,刘学彦,韩汝存,马纯梁. 盾构直接连续切削大直径桩施工技术研究. 现代隧道技术. 2024(S1): 1002-1010 .
![]() | |
12. |
林向阳,高伟琪,刘学彦,赵洪生,郑德文. 盾构直接切削大直径桩施工技术研究. 土木工程学报. 2024(S1): 178-183 .
![]() | |
13. |
万宝林. 盾构穿越既有线运营车站围护桩关键施工技术. 建筑机械化. 2023(03): 24-27 .
![]() | |
14. |
张昆. 盾构掘进遇既有桥桩截桩桥梁防护应用研究. 工程技术研究. 2023(04): 108-110 .
![]() | |
15. |
刘欣玮,杨涛. 地铁隧道下穿既有车站方案研究. 工程技术研究. 2023(04): 208-210 .
![]() | |
16. |
李谷阳,王广. 盾构刀具形状对切削桩基影响及刀具选型研究. 广东建材. 2023(05): 112-115 .
![]() | |
17. |
姜梅杰,徐涛,刘晓凤. 隧道施工对邻近桩基变形与受力影响数值模拟研究. 黑龙江工业学院学报(综合版). 2023(06): 117-125 .
![]() | |
18. |
廖秋林,宋跃均,方建华,杨昊,赵立安,陈子豪. 软流塑地层盾构切削钢筋混凝土桩基工程实践. 都市快轨交通. 2023(05): 100-109 .
![]() | |
19. |
贾蓬,孙占阳,赵文,宋立民. 盾构切削桩基研究现状综述. 隧道建设(中英文). 2023(10): 1637-1656 .
![]() | |
20. |
邱金亮. 大直径盾构隧道近距离穿越桥梁桩基扰动分析. 黑龙江交通科技. 2023(12): 93-96+101 .
![]() | |
21. |
岳玮琦,顾展飞,苏伟林. 盾构滚刀作用下混凝土材料破碎分形与能耗. 材料科学与工程学报. 2023(06): 995-1000+1010 .
![]() | |
22. |
朱敏,徐琛,汪子豪. 富水砂层既有运营车站地下障碍物的冻结法清障方案力学分析及工程应用. 隧道建设(中英文). 2023(S2): 395-405 .
![]() | |
23. |
徐敬民,章定文,刘松玉. 地表框架结构作用下隧道施工诱发的砂质地层变形. 岩土工程学报. 2022(04): 602-612 .
![]() | |
24. |
王军. 大直径泥水盾构始发段掘进对近接既有地铁桥梁的影响分析. 中国安全生产科学技术. 2022(04): 176-184 .
![]() | |
25. |
高洪梅,蔡鑫涛,张正,李兆,王志华. 盾构下穿桥梁桩基的截桩效应. 地下空间与工程学报. 2022(06): 2044-2051 .
![]() | |
26. |
张天宝,王雪颖. 基于AHP-熵权法的跨燃气管道现浇梁施工风险评价. 工业安全与环保. 2021(02): 65-69 .
![]() | |
27. |
金平,夏童飞,刘晓阳. 复合地层盾构磨除地下连续墙关键技术研究. 四川建筑. 2021(01): 224-228 .
![]() | |
28. |
奚晓广,吴淑伟,王哲,孙九春,许四法,王瑞. 砂砾地层盾构施工土体变形规律三维数值分析. 地基处理. 2021(01): 29-33 .
![]() | |
29. |
赵勇,周学彬,彭祖民,喻伟,李宏波. 盾构下穿高强预应力管桩基施工技术. 建筑机械化. 2020(08): 51-54 .
![]() | |
30. |
庄欠伟,袁一翔,徐天明,张弛. 射流联合盾构切削钢筋混凝土仿真与试验. 岩土工程学报. 2020(10): 1817-1824 .
![]() | |
31. |
李发勇. 可拆解盾构下穿既有桥桩磨桩施工影响研究——以宁波轨道交通4号线柳宁盾构区间为例. 隧道建设(中英文). 2020(10): 1506-1515 .
![]() | |
32. |
周国强,杨高伟,奚灵智. 软土地区地铁盾构区间的桥梁稳定性研究. 工程技术研究. 2020(24): 34-36 .
![]() |