• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HAN Xing-bo, YE Fei, FENG Hao-lan, HAN Xin, TIAN Chong-ming, LEI Ping. Pressure of surrounding rock of deep-buried loess shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1271-1278. DOI: 10.11779/CJGE202107012
Citation: HAN Xing-bo, YE Fei, FENG Hao-lan, HAN Xin, TIAN Chong-ming, LEI Ping. Pressure of surrounding rock of deep-buried loess shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1271-1278. DOI: 10.11779/CJGE202107012

Pressure of surrounding rock of deep-buried loess shield tunnel

More Information
  • Received Date: November 11, 2020
  • Available Online: December 02, 2022
  • With the development of shield tunnel engineering, more and more deep-buried loess shield projects have gradually appeared. The calculation of pressure of the surrounding rock is of great significance to the design of linings and safety evaluation during the service period. The aim of this study is to establish a theoretical solution for pressure of the surrounding rock of deep-buried loess shield tunnel. With the consideration of the continuous conditions of the radial deformation at the interface between the linings and the surrounding rock, the analytical solutions for forces and displacements of the linings and surrounding rock are derived based on the Fenner formula. Then, the analytical solution of pressure of the surrounding rock applicable to loess shield tunnel is given by introducing the structural parameters of loess. Considering the generalized shear strain of the surrounding rock after tunnel excavation, a solving method for the structural parameters of surrounding rock of loess tunnel is given. The influences of humidification on the structural parameters of loess and the pressure of surrounding rock are then discussed by introducing the surrounding rock structural parameters of loess. It is found that the generalized shear strain increases radially in the plastic zone and gradually decreases in the elastic zone. It is basically stable outside the twice the radius of the plastic zone. The structural parameters of loess of the surrounding rock can be recognized as evenly distributed in the plastic zone. When the water content of rock increases from 2% to 20%, the expansion of the plastic zone is about 33%, and the increase of the pressure of the surrounding rock is about 10%. The research results are expected to provide ideas for the calculation of pressure of the surrounding rock of deep-buried loess shield tunnels.
  • [1]
    TERZAGHI K. Theoretical Soil Mechanics[M]. Hoboken: John Wiley and Sons, 1943.
    [2]
    LI S, JIANIE Y C, HO I H, et al. Experimental and numerical analyses for earth pressure distribution on high-filled cut-and-cover tunnels[J]. KSCE Journal of Civil Engineering, 2020, 24(6): 1903-1913. doi: 10.1007/s12205-020-1693-7
    [3]
    HAN L, YE G L, CHEN J J, et al. Pressures on the lining of a large shield tunnel with a small overburden: a case study[J]. Tunnelling and Underground Space Technology, 2017, 64(8): 1-9.
    [4]
    何川, 张景, 封坤. 盾构隧道结构计算分析方法研究[J]. 中国公路学报, 2017, 30(8): 1-14. doi: 10.3969/j.issn.1001-7372.2017.08.001

    HE Chuan, ZHANG Jing, FENG Kun. Research on structural analysis method of shield tunnels[J]. China Journal of Highway and Transport, 2017, 30(8): 1-14. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.08.001
    [5]
    TAKANO Y H, WORKING GRP NO.2 I T A. Guidelines for the design of shield tunnel lining[J]. Tunnelling and Underground Space Technology, 2000, 15(3): 303-331. doi: 10.1016/S0886-7798(00)00058-4
    [6]
    CHEN K H, PENG F L. An improved method to calculate the vertical earth pressure for deep shield tunnel in Shanghai soil layers[J]. Tunnelling and Underground Space Technology, 2018, 75(5): 43-66.
    [7]
    卢钦武, 邓涛, 关振长. 水平地震作用下浅埋隧道围岩压力的计算方法研究[J]. 岩土工程学报, 2020, 42(6): 1093-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006016.htm

    LU Qin-wu, DENG Tao, GUAN Zhen-chang. Ground loading of shallow tunnels under seismic scenario[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1093-1100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006016.htm
    [8]
    王明年, 王志龙, 桂登斌, 等. 考虑开挖方法影响的深埋隧道围岩形变压力计算方法研究[J/OL]. 西南交通大学学报, 1-10.

    WANG Ming-nian, WANG Zhi-long, GUI Deng-bin, et al. Study on deformation load calculation method of surrounding rock in deep-buried tunnel considering the influence of excavation method[J/OL]. Journal of Southwest Jiaotong University, 1-10. (in Chinese)
    [9]
    赵占厂, 谢永利, 杨晓华, 等. 黄土公路隧道围岩压力测试分析[J]. 现代隧道技术, 2003, 40(2): 58-61. doi: 10.3969/j.issn.1009-6582.2003.02.014

    ZHAO Zhan-chang, XIE Yong-li, YANG Xiao-hua, et al. Ground pressure measurement and analysis for highway tunnels located in loess[J]. Modern Tunnelling Technology, 2003, 40(2): 58-61. (in Chinese) doi: 10.3969/j.issn.1009-6582.2003.02.014
    [10]
    赵占厂, 谢永利. 黄土公路隧道结构设计与施工中的若干问题[J]. 现代隧道技术, 2008, 45(6): 56-60, 81. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200806013.htm

    ZHAO Zhan-chang, XIE Yong-li. Some problems about structural design and construction for highway loess tunnels[J]. Modern Tunnelling Technology, 2008, 45(6): 56-60, 81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200806013.htm
    [11]
    王建宇. 对形变压力的认识——隧道围岩挤压性变形问题探讨[J]. 现代隧道技术, 2020, 57(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202004001.htm

    WANG Jian-yu. The key way is to release the genuine rock pressure—discussion on problems of tunnelling in squeezing ground[J]. Modern Tunnelling Technology, 2020, 57(4): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202004001.htm
    [12]
    王明年, 王志龙, 张霄, 等. 深埋隧道围岩形变压力计算方法研究[J]. 岩土工程学报, 2020, 42(1): 81-90. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001015.htm

    WANG Ming-nian, WANG Zhi-long, ZHANG Xiao, et al. Method for calculating deformation pressure of surrounding rock of deep-buried tunnels[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 81-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001015.htm
    [13]
    WANG M N, DONG Y C, YU L. Analytical solution for a loess tunnel based on a bilinear strength criterion[J]. Soil Mechanics and Foundation Engineering, 2020, 57(4): 296-304.
    [14]
    王明年, 董宇苍, 于丽. 基于双线性强度准则的黄土隧道围岩弹塑性解析解[J]. 中国铁道科学, 2019, 40(6): 68-77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201906010.htm

    WANG Ming-nian, DONG Yu-cang, YU Li. Elastoplastic analytical solution to surrounding rock of loess tunnel based on bilinear strength criterion[J]. China Railway Science, 2019, 40(6): 68-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201906010.htm
    [15]
    LUO Y B, CHEN J X, GAO S T, et al. Stability analysis of super-large-section tunnel in loess ground considering water infiltration caused by irrigation[J]. Environmental Earth Sciences, 2017, 76(22).
    [16]
    李国良, 邵生俊, 靳宝成, 等. 黄土隧道地基的湿陷性问题研究[J]. 铁道工程学报, 2015, 32(12): 12-16, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201512003.htm

    LI Guo-liang, SHAO Sheng-jun, JIN Bao-cheng, et al. Research on the problems of collapsibility of loess tunnel foundation[J]. Journal of Railway Engineering Society, 2015, 32(12): 12-16, 50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201512003.htm
    [17]
    WENG X L, SUN Y F, YAN B H, et al. Centrifuge testing and numerical modeling of tunnel face stability considering longitudinal slope angle and steady state seepage in soft clay[J]. Tunnelling and Underground Space Technology, 2020, 101(7): 1-14.
    [18]
    WENG X L, SUN Y F, ZHANG Y W, et al. Physical modeling of wetting-induced collapse of shield tunneling in loess strata[J]. Tunnelling and Underground Space Technology, 2019, 90(8): 208-219.
    [19]
    谢定义, 齐吉琳. 土结构性及其定量化参数研究的新途径[J]. 岩土工程学报, 1999, 21(6): 651-656. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199906000.htm

    XIE Ding-yi, QI Ji-lin. Soil structure characteristics and new approach in research on its quantitative parameter[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 651-656. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199906000.htm
    [20]
    谢定义, 齐吉琳, 张振中. 考虑土结构性的本构关系[J]. 土木工程学报, 2000, 33(4): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200004007.htm

    XIE Ding-yi, QI Ji-lin, ZHANG Zhen-zhong. A constitutive laws considering soil structural properties[J]. China Civil Engineering Journal, 2000, 33(4): 35-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200004007.htm
    [21]
    陈昌禄, 邵生俊, 邓国华. 土的结构性参数与强度的关系及其在边坡稳定分析中的应用[J]. 中南大学学报(自然科学版), 2010, 41(1): 328-334. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201001056.htm

    CHEN Chang-lu, SHAO Sheng-jun, DENG Guo-hua. Relationship between soil structural parameters and strength and its application in slope stability analysis[J]. Journal of Central South University (Science and Technology), 2010, 41(1): 328-334. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201001056.htm
    [22]
    邵生俊, 龙吉勇, 于清高, 等. 湿陷性黄土的结构性参数本构模型[J]. 水利学报, 2006, 37(11): 1315-1322. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200611005.htm

    SHAO Sheng-jun, LONG Ji-yong, YU Qing-gao, et al. A constitutive model of collapsible loess with structural parameter[J]. Journal of Hydraulic Engineering, 2006, 37(11): 1315-1322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200611005.htm
    [23]
    邓国华, 邵生俊. 黄土隧道围岩的结构性变化特征分析[J]. 岩土工程学报, 2008, 30(2): 219-224. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200802011.htm

    DENG Guo-hua, SHAO Sheng-jun. Variation characteristic analysis of a structural parameter for surrounding soils in loess tunnels[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 219-224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200802011.htm
    [24]
    邓国华, 邵生俊, 陈昌禄, 等. 一个可考虑球应力和剪应力共同作用的结构性参数[J]. 岩土力学, 2012, 33(8): 2310-2314. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201208014.htm

    DENG Guo-hua, SHAO Sheng-jun, CHEN Chang-lu, et al. A structural parameter reflecting coupling action between shear stress and spherical stress[J]. Rock and Soil Mechanics, 2012, 33(8): 2310-2314. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201208014.htm
    [25]
    邓国华. 真三轴条件下黄土的结构性参数及结构性本构关系研究[D]. 西安: 西安理工大学, 2009.

    DENG Guo-hua. Research on Structure Parameter of Loess and Structure Constitutive Relations under Ture Tri-Axial Condition[D]. Xi'an: Xi'an University of Technology, 2009. (in Chinese)
    [26]
    邓国华, 邵生俊, 佘芳涛. 结构性黄土的修正剑桥模型[J]. 岩土工程学报, 2012, 34(5): 834-841. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201205010.htm

    DENG Guo-hua, SHAO Sheng-jun, SHE Fang-tao. Modified Cam-clay model of structured loess[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 834-841. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201205010.htm
    [27]
    邹志林. 海底取水盾构隧道双层衬砌结构受力特性研究[D]. 长沙: 中南大学, 2013.

    ZOU Zhi-lin. Study of Mechanical Characters of Subsea Water-Intaken Shield Tunnel with Double Lining[D]. Changsha: Central South University, 2013. (in Chinese)
    [28]
    江英超, 何川, 方勇, 等. 盾构施工对黄土地层的扰动及管片衬砌受荷特征[J]. 中南大学学报(自然科学版), 2013, 44(7): 2934-2941. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201307043.htm

    JIANG Ying-chao, HE Chuan, FANG Yong, et al. Soil disturbance caused by shield tunneling and segment lining loading characteristics in loess strata[J]. Journal of Central South University (Science and Technology), 2013, 44(7): 2934-2941. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201307043.htm
    [29]
    王俊, 方勇, 何川, 等. 盾构隧道施工对砂性地层的扰动及管片受荷特征[J]. 地下空间与工程学报, 2015, 11(1): 156-162, 170. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201501024.htm

    WANG Jun, FANG Yong, HE Chuan, et al. Disturbance of shield tunnel construction to sandy stratum and load bearing characteristics of segment lining[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(1): 156-162, 170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201501024.htm
    [30]
    王明年, 郭军, 罗禄森, 等. 高速铁路大断面深埋黄土隧道围岩压力计算方法[J]. 中国铁道科学, 2009, 30(5): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200905010.htm

    WANG Ming-nian, GUO Jun, LUO Lu-sen, et al. Calculation method for the surrounding rock pressure of deep buried large sectional loess tunnel of high-speed railway[J]. China Railway Science, 2009, 30(5): 53-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200905010.htm
  • Related Articles

    [1]HOU Tianshun, ZHANG Jiancheng, SHU Bo. Model tests on earth pressure at rest of light weight soil behind rigid retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 764-773. DOI: 10.11779/CJGE20220928
    [2]HOU Tian-shun, GUO Peng-fei, YANG Kai-xuan, WANG Qi, LUO Ya-sheng. Characteristics and method for calculating earth pressure at rest of light weight soil with foamed particles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2234-2244. DOI: 10.11779/CJGE202212010
    [3]ZHANG Kun-yong, LI Guang-shan, MEI Xiao-hong, DU Wei. Stress-deformation characteristics of silty soil based on K0 consolidation and drainage unloading stress path tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1182-1188. DOI: 10.11779/CJGE201707003
    [4]MO Wei-hong, CHEN Xiao-ping, LUO Qing-zi. Deformation of soft soils under constant stress ration consolidation with K0 [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 798-803.
    [5]JIA Ning. Coefficient of at-rest earth pressure from limited backfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1333-1337.
    [6]Cyclic shearing behavior of K0-consolidated clay and its rheological simulation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1946-1955.
    [7]Critical load of ground considering load embedded depth and variation of K0[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1930-1934.
    [8]YAO Yangping, HOU Wei. A unified hardening model for K0 overconsolidated clays[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 316-322.
    [9]WANG Lizhong, DAN Hanbo. Elastic viscoplastic constitutive model for K0-consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1344-1354.
    [10]WANG Lizhong, YE Shenghua, SHEN Kailun, HU Yayuan. Undrained shear strength of K0 consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 970-977.
  • Cited by

    Periodical cited type(12)

    1. 裘友强,张留俊,刘洋,刘军勇,尹利华. “双碳”背景下公路软土地基处理技术研究进展. 水利水电技术(中英文). 2025(01): 113-131 .
    2. 龙军,彭搏程. 基于桩周土围限失效的筋箍料粒桩复合地基承载力计算. 公路工程. 2025(01): 138-143 .
    3. 谭鑫,尹心,胡政博,裘钊辉,陈昌富. 筋箍碎石桩承载机制的三维离散-连续介质耦合数值模拟. 铁道学报. 2023(04): 139-147 .
    4. 王嘉鑫,纪明昌,郑俊杰,郑烨炜. 软土地基中包裹碎石桩地震动力响应数值模拟研究. 土木与环境工程学报(中英文). 2023(05): 58-65 .
    5. 郝耀虎,周杨,王闫超,刘少炜. 基于透明土技术的加筋碎石桩承载特性试验研究. 铁道科学与工程学报. 2023(12): 4582-4591 .
    6. 黄河,罗正东,李检保,罗彪. 竹筋格栅套筒加筋碎石桩承载力分析. 人民长江. 2022(06): 193-197 .
    7. 袁涌筌,赵明华,杨超炜,肖尧. 循环荷载下筋箍碎石桩复合地基动力特性数值分析. 湖南大学学报(自然科学版). 2022(11): 198-205 .
    8. 臧一平,刘聪. 考虑鼓胀和自重的散体材料桩复合地基承载力分析. 地基处理. 2021(06): 451-457 .
    9. 郑刚,周海祚. 复合地基极限承载力与稳定研究进展. 天津大学学报(自然科学与工程技术版). 2020(07): 661-673 .
    10. 李建喜,康超,李玉峰. 碎石桩处理软土地基的现状及趋势分析. 北方建筑. 2020(03): 60-63+67 .
    11. 邱梦瑶,陈树培,唐亮,凌贤长,张效禹,李雪伟,刘书幸. 加筋碎石桩复合饱和砂土地基抗液化性能评价方法. 地震研究. 2020(03): 554-562+603 .
    12. 姚志伟,张永艳. 筏板基础下碎石桩改良软土地基性能的数值研究. 河北工业科技. 2020(05): 359-365 .

    Other cited types(13)

Catalog

    Article views (386) PDF downloads (156) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return