• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Rui-geng, LIU Hong-jun, SHI Wei. Mechanism of residual liquefaction of silty seabed under standing waves[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1228-1237. DOI: 10.11779/CJGE202107007
Citation: HU Rui-geng, LIU Hong-jun, SHI Wei. Mechanism of residual liquefaction of silty seabed under standing waves[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1228-1237. DOI: 10.11779/CJGE202107007

Mechanism of residual liquefaction of silty seabed under standing waves

More Information
  • Received Date: October 08, 2020
  • Available Online: December 02, 2022
  • The standing waves exist when the progressive waves are reflected by the breakwater or the bank wall, which leads to the water surface oscillating where it is and the waveform doesn’t advance. Seabed soil will undergo liquefaction under standing waves, resulting in the instability of seabed foundation of marine structures. Based on the silt seabed in the Yellow River Delta of China, a series of wave flume experiments are conducted under standing waves so as to investigate the liquefaction mechanism at the antinodal section. Then, a parametric study is conducted with the proposed model to investigate the effects of the soil and wave characteristics on residual liquefaction. The results indicate that the onset of residual liquefaction is linked with cyclic stress ratio. The residual liquefaction occurs when the cyclic stress ratio χ equals the critical value χcr, and the required χcr in deeper layer is larger that of the shallow layer. The required χcr at the antinodal section is far more than that at the nodal section, and the required wave loading time is longer and the liquefaction is smaller than that at the nodal section. The horizontal transporting of pore pressure and the accumulating of plastic volumetric strain induced by cyclic normal stress contribute to the liquefaction at the antinodal section simultaneously, and the experimental results revealthat the former and the latter contribute to 54.3% and 45.7% respectively at the depth of 0.05 m. The discrepancy of the distribution pattern of the excess pore water pressure exists between the nodal section and the antinodal section. The shallower the water depth, the higher the wave steepness, and the smaller the saturability results in a deeper liquefaction depth.
  • [1]
    王小雯. 波浪作用下饱和砂质海床液化机理研究[D]. 北京: 清华大学, 2017.

    WANG Xiao-wen. Research on Mechanics of Wave-Induced Liquefaction in Saturated Sandy Seabed[D]. Beijing: Tsinghua University, 2017. (in Chinese)
    [2]
    王虎. 波浪作用下黄河三角洲粉质土海床不稳定机制研究[D]. 青岛: 中国海洋大学, 2012.

    WANG Hu. Mechanism of Wave-Induced Instability of the Silty Seabed in the Yellow River Delta[D]. Qingdao: Ocean University of China, 2012. (in Chinese)
    [3]
    TSAI C P. Wave-induced liquefaction potential in a porous seabed in front of a breakwater[J]. Ocean Engineering, 1995, 22(1): 1-18. doi: 10.1016/0029-8018(94)00042-5
    [4]
    SEKIGUCHI H, KITA K, OKAMOTO O, et al. Response of poro-elastoplastic beds to standing waves[J]. Soils and Foundations, 1995, 35(3): 31-42. doi: 10.3208/sandf.35.31
    [5]
    SASSA S, SEKIGUCHI H. Wave-induced liquefaction of beds of sand in a centrifuge[J]. Géotechnique, 1999, 49(5): 621-638. doi: 10.1680/geot.1999.49.5.621
    [6]
    JENG D S, LIN Y S. Poroelastic analysis of the wave-seabed interaction problem[J]. Computers and Geotechnics, 2000, 26(1): 43-64. doi: 10.1016/S0266-352X(99)00032-4
    [7]
    周晓智, 陈育民, 刘汉龙. 驻波作用下有限厚度海床动应力路径特性研究[J]. 岩土工程学报, 2018, 40(5): 890-899. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805017.htm

    ZHOU Xiao-zhi, CHEN Yu-min, LIU Han-long. Study on characteristics of dynamic stress path of finite-thickness seabed under standing waves[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 890-899. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805017.htm
    [8]
    ZHAO H Y, JENG D S, LIAO C C, et al. Three-dimensional modeling of wave-induced residual seabed response around a mono-pile foundation[J]. Coastal Engineering, 2017, 128: 1-21. doi: 10.1016/j.coastaleng.2017.07.002
    [9]
    JENG D S, ZHAO H Y. Two-Dimensional model for accumulation of pore pressure in marine sediments[J]. Journal of Waterway Port Coastal and Ocean Engineering, 2015, 141(3): 04014042. doi: 10.1061/(ASCE)WW.1943-5460.0000282
    [10]
    KIRCA V S O, SUMER B M, FREDSOE J. Residual liquefaction of seabed under standing waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2013, 139(6): 489-501. doi: 10.1061/(ASCE)WW.1943-5460.0000208
    [11]
    WANG H, LIU H J, ZHANG M S. Pore pressure response of seabed in standing waves and its mechanism[J]. Coastal Engineering, 2014, 91: 213-219. doi: 10.1016/j.coastaleng.2014.06.005
    [12]
    YANG G X, YE J H. Nonlinear standing wave-induced liquefaction in loosely deposited seabed[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(1): 205-223. doi: 10.1007/s10064-017-1038-z
    [13]
    SASSA S, SEKIGUCHI H. Analysis of wave-induced liquefaction of sand beds[J]. Géotechnique, 2001, 51(2): 115-126. doi: 10.1680/geot.2001.51.2.115
    [14]
    蔡正银, 吴诗阳, 武颖利, 等. 高地震烈度区深厚覆盖砂层液化研究[J]. 岩土工程学报, 2020, 42(3): 405-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003003.htm

    CAI Zheng-yin, WU Shi-yang, WU Ying-li, et al. Liquefaction of deep overburden layers in zones with high earthquake intensity[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 405-412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003003.htm
    [15]
    SASSA S, SEKIGUCHI H. Analysis of wave-induced liquefaction of sand beds[J]. Géotechnique, 2001, 51(5): 115-126.
    [16]
    JENG D S. Soil response in cross-anisotropic seabed due to standing waves[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(1): 9-19. doi: 10.1061/(ASCE)1090-0241(1997)123:1(9)
    [17]
    ZEN K, YAMAZAKI H. Mechanism of wave-induced liquefaction and densification in seabed[J]. Soils and Foundations, 1990, 30(4): 90-104. doi: 10.3208/sandf1972.30.4_90
    [18]
    MUTLU SUMER B, HATIPOGLU F, FREDSOE J, et al. The sequence of sediment behaviour during wave-induced liquefaction[J]. Sedimentology, 2006, 53(3): 611-629. doi: 10.1111/j.1365-3091.2006.00763.x
    [19]
    MADSEN O S. Wave-induced pore pressures and effective stresses in a porous bed[J]. Géotechnique, 1978, 28(4): 377-393. doi: 10.1680/geot.1978.28.4.377
    [20]
    刘红军, 王小花, 贾永刚, 等. 黄河三角洲饱和粉土液化特性及孔压模型试验研究[J]. 岩土力学, 2005, 26(增刊2): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S2021.htm

    LIU Hong-jun, WANG Xiao-hua, JIA Yong-gang, et al. Experimental study on liquefaction properties and pore-water pressure model of saturated silt in Yellow River Delta[J]. Rock and Soil Mechanics, 2005, 26(S2): 83-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S2021.htm
  • Cited by

    Periodical cited type(10)

    1. 王军,朱传根,李勋,王波,张艺腾. 类岩石试件三轴扰动破坏特性试验研究. 采矿与岩层控制工程学报. 2024(02): 15-28 .
    2. 王世鸣,白云帆,王嘉琪,吴秋红. 应力波斜入射下砂岩层裂破坏的试验研究. 振动与冲击. 2024(14): 201-210 .
    3. 杨阳,杨仁树,陈骏,方士正,李炜煜,范子儀,张祥,朱锐,张渊通,杨欢,王雁冰. 岩石爆破基础理论研究进展与展望Ⅰ—本构关系. 工程科学学报. 2024(11): 1931-1947 .
    4. 王磊,陈礼鹏,刘怀谦,朱传奇,李少波,范浩,张帅,王安铖. 不同初始瓦斯压力下煤体动力学特性及其劣化特征. 岩土力学. 2023(01): 144-158 .
    5. 李晓照,张骐烁,柴博聪,戚承志. 动力损伤后的脆性岩石静力蠕变断裂模型研究. 力学学报. 2023(04): 903-914 .
    6. 王世鸣,王嘉琪,熊咸瑞,陈正红,桂易林,周健. 斜入射波扰动对岩石层裂的影响(英文). Journal of Central South University. 2023(06): 1981-1992 .
    7. 肖军华,白英琦,张骁,刘志勇,王炳龙. 考虑应力波透反射作用的分层颗粒材料细观动力响应分析. 力学季刊. 2023(03): 620-632 .
    8. 陈绍杰,冯帆,李夕兵,王成,李地元,ROSTAMI Jamal,朱泉企. 复杂开采条件下深部硬岩板裂化破坏试验与模拟研究进展和关键问题. 中国矿业大学学报. 2023(05): 868-888 .
    9. 李学文,邓凯萱. 高压水射流破除混凝土研究现状及展望. 广东建材. 2022(10): 16-20 .
    10. 常聚才,齐潮,殷志强,史文豹,贺凯,吴昊原. 动载作用下端锚锚固体力学响应特征研究. 岩土力学. 2022(12): 3294-3304 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return