• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
TANG Zhao-guang, WANG Yong-zhi, DUAN Xue-feng, SUN Rui, WANG Ti-qiang. Development and performance evaluation of separable high-frequency response miniature pore water pressure transducer[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1210-1219. DOI: 10.11779/CJGE202107005
Citation: TANG Zhao-guang, WANG Yong-zhi, DUAN Xue-feng, SUN Rui, WANG Ti-qiang. Development and performance evaluation of separable high-frequency response miniature pore water pressure transducer[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1210-1219. DOI: 10.11779/CJGE202107005

Development and performance evaluation of separable high-frequency response miniature pore water pressure transducer

More Information
  • Received Date: September 16, 2020
  • Available Online: December 02, 2022
  • The pore water pressure is one of the key mechanical indexes in geotechnical model tests and in-situ engineering monitoring. Aiming at the characteristics of high frequency and instantaneous load of dynamic centrifugal model tests and the measuring requirements of dynamic pore water pressure, a novel separable high-frequency response miniature transducer DSP-II is developed. Moreover, the internationally recognized standard pore water pressure transducer PDCR-81 is selected to perform a series of static and dynamic calibration tests and centrifugal model tests to verify the accuracy, frequency response and stability performance of the DSP-II. The main conclusions are drawn: (1) The DSP-II has established key technology and design method in improving the frequency response, accuracy, life cycle, etc. (2) The dynamic calibration test results show that the response time of the DSP-II and the PDCR-81 is 4.93 and 4.97 ms, and the amplitude error is 0.483% and 0.575%, which indicates that the two transducers have basically the same dynamic performance and can meet the requirements of dynamic centrifugal tests with frequencies equal or less than 200 Hz. (3) From the static stepwise centrifugal loading and repeated tests after 39 days, the results of the two transducers with different buried depths are highly consistent with the theoretical values, the average amplitude error is 0.347% and 0.392%, and the repeatability index is 0.157% and 0.169%, which indicates that they have excellent long-term stability and consistency. (4) The results of the two transducers with different dynamic loads are nearly consistent in centrifugal model tests. The maximum time lag of peak value and the minimum correlation coefficient are 1.76 ms and 0.9908, which proves that the DSP-II reach the measurement performance of the PDCR-81. The research work and conclusions are essential for advancing pore water pressure measurement technology, and may provide important guidance and design method.
  • [1]
    KNODEL P C, KUTTER B L, SATHIALINGAM N, et al. Effects of arching on response time of miniature pore pressure transducer in clay[J]. Geotechnical Testing Journal, 1990, 13(3): 164-178. doi: 10.1520/GTJ10155J
    [2]
    KÖNIG D, JESSBERGER H L, BOLTON M D, et al. Pore Pressure Measurement During Centrifuge Model Tests: Experience of Five Laboratories[M]. Rotterdam: Balkema, 1994: 101-108.
    [3]
    CHANEY R C, DEMARS K R, MURALEETHARAN K K, et al. The use of miniature pore pressure transducers in measuring matric suction in unsaturated soils[J]. Geotechnical Testing Journal, 1999, 22(3): 226-234. doi: 10.1520/GTJ11113J
    [4]
    孙汝建. 压阻式孔隙水压力计性能试验研究[J]. 岩土工程学报, 2002, 24(6): 796-798. doi: 10.3321/j.issn:1000-4548.2002.06.028

    SUN Ru-jian. Experimental study of piezoresistive silicon pore pressure transducers[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 796-798. (in Chinese) doi: 10.3321/j.issn:1000-4548.2002.06.028
    [5]
    王永志, 袁晓铭, 王海. 动力离心试验常规点位式量测技术改进方法[J]. 岩土力学, 2015, 36(增刊2): 722-728. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2108.htm

    WANG Yong-zhi, YUAN Xiao-ming, WANG Hai. Improvement method of node-oriented measurement technique for dynamic centrifuge modeling[J]. Rock and Soil Mechanics, 2015, 36(S2): 722-728. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2108.htm
    [6]
    汤兆光, 王永志, 孙锐, 等. 土工离心试验微型孔压传感器标定方法与影响因素[J]. 岩土工程学报, 2020, 42(7): 1238-1246. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007011.htm

    TANG Zhao-guang, WANG Yong-zhi, SUN Rui, et al. Calibration method and effect factors of miniature pore water pressure transducer for geotechnical centrifuge modelling[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1238-1246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007011.htm
    [7]
    HOLZER T L, HANKS T C, YOUD T L. Dynamics of liquefaction during the 1987 superstition hills, California, earthquake[J]. Science, 1989, 244: 56-59. doi: 10.1126/science.244.4900.56
    [8]
    周镜.岩土工程中的几个问题[J]. 岩土工程学报, 1999, 21(1): 2-8. doi: 10.3321/j.issn:1000-4548.1999.01.002

    ZHOU Jing. Some cases in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 2-8. (in Chinese) doi: 10.3321/j.issn:1000-4548.1999.01.002
    [9]
    曾辉, 余尚江. 岩土应力传感器设计和使用原则[J]. 岩土工程学报, 1994, 16(1): 93-98. doi: 10.3321/j.issn:1000-4548.1994.01.012

    ZENG Hui, YU Shang-jiang. Design and use policy of stress sensors in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(1): 93-98. (in Chinese) doi: 10.3321/j.issn:1000-4548.1994.01.012
    [10]
    TALESNICK M. Measuring soil pressure within a soil mass[J]. Canadian Geotechnical Journal, 2013, 50(7): 716-722. doi: 10.1139/cgj-2012-0347
    [11]
    芮瑞, 吴端正, 胡港, 等. 模型试验中膜式土压力盒标定及其应用[J]. 岩土工程学报, 2016, 38(5): 837-845. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605009.htm

    RUI Rui, WU Duan-zheng, HU Gang, et al. Calibration tests on diaphragm-type pressure cells[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 837-845. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605009.htm
    [12]
    王永志. 大型动力离心机设计理论与关键技术研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2013.

    WANG Yong-zhi. Study on Design Theory and Key Technology of Large Dynamic Centrifuge[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2013. (in Chinese)
    [13]
    STRINGER M, ALLMOND J, PROTO C, et al. Evaluating the response of new pore pressure transducers for use in dynamic centrifuge tests[C]//Proceedings of the 8th International Conference on Physical Modelling in Geotechnics, 2014, Perth, Australia.
    [14]
    王永志, 汤兆光, 孙锐, 等. 一种微型孔隙水压计: CN209127331U[P]. 2019-07-26.

    WANG Yong-zhi, TANG Zhao-guang, SUN Rui, et al. Miniature Pore Water Pressure Gauge: CN209127331U[P]. 2019-07-26. (in Chinese)
    [15]
    土工离心模型试验技术规程:DL/T 5102—2013[S]. 2014.

    Specification for Geotechnical Centrifuge Model Test Techniques: DL/T 5102—2013[S]. 2014. (in Chinese)
    [16]
    压力传感器性能试验方法:GB/T 15478—2015[S]. 2015.

    The Methods of the Performances for Pressure Transducer/ Sensor: GB/T 15478—2015[S]. 2015. (in Chinese)
    [17]
    CHANEY R C, DEMAES K R, DEWOOLKAR M M, et al. A substitute pore fluid for seismic centrifuge modeling[J]. Geotechnique Testing Journal, 1999, 22(3): 196-210. doi: 10.1520/GTJ11111J
    [18]
    CHANEY R C, DEMARS K R, STEWART D P, et al. Experience with the use of methylcellulose as a viscous pore fluid in centrifuge models[J]. Geotechnical Testing Journal, 1998, 21(4): 365-369. doi: 10.1520/GTJ11376J
  • Related Articles

    [1]ZHANG Hanchao, HU Shengxia, LI Hailong, LIN Sen, LI Wenna. Characteristics of triaxial deformation of Nanchang laterite[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 119-122. DOI: 10.11779/CJGE2023S10012
    [2]DENG Mao-lin, ZHOU Jian, YI Qing-lin, ZHANG Fu-ling, HAN Bei, LI ZHUO Jun. Characteristics and mechanism of deformation of chair-shaped soil landslides in Three Gorges Reservoir area[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1296-1303. DOI: 10.11779/CJGE202007013
    [3]YU Wei-jian, WANG Wei-jun, WEN Guo-hua, ZHANG Nong, WU Hai, ZHANG Yong-qing. Deformation mechanism and control technology of coal roadway under deep well and compound roof[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1501-1508.
    [4]WU Hong-gang, MA Hui-min, BAO Gui-yu. Deformation mechanism of tunnel-slope system in shallow tunnels under unsymmetrical pressure[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 509-514.
    [5]YAN Zhi-xin, ZHANG Liu-ping, CAO Xiao-hong, ZHANG Xue-dong, CAI Han-cheng. D ynamic response and deformation mechanism of a bedding rock slope under earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 54-58.
    [6]Deformation mechanism of secondary consolidation of natural clays[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [7]LI Jianlin, LIU Jie, WANG Lehua. Studies on deformation mechanism and rock mass stability of high slopes of Geheyan Power Station under multiple factors[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1289-1295.
    [8]YIN Ji, WEI Jianhua, LI Xiangfan. Increment method to calculate dispalcement of composite soil nailled wall[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 755-759.
    [9]Miao Tiande, Liu Zhongyu, Ren Jiusheng. Deformation mechanism and constitutive relation of collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 383-387.
    [10]Wang Hongjin, Zhang Guoping, Zhou Keji. Effects Of Inherent and Induced Anisotropy on Strength and Deformation Characteristics of Compacted Cohesive Soil[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 1-10.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return