• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Zi-gang, XU Cheng-shun, DU Xiu-li, WU Ye. Seismic damage of Daikai station and tunnel based on quasi-static pushover analysis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1182-1191. DOI: 10.11779/CJGE202107002
Citation: XU Zi-gang, XU Cheng-shun, DU Xiu-li, WU Ye. Seismic damage of Daikai station and tunnel based on quasi-static pushover analysis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1182-1191. DOI: 10.11779/CJGE202107002

Seismic damage of Daikai station and tunnel based on quasi-static pushover analysis

More Information
  • Received Date: October 14, 2020
  • Available Online: December 02, 2022
  • At present, the researches on the seismic damage of Daikai station and tunnel are mostly focused on dynamic time history analysis. However, they are characterized by a complicated modeling process and low calculation efficiency. The original Daikai station and tunnel as well as the newly built Daikai station are taken as examples. Firstly, the pseudo-static pushover analysis of the components is carried out considering the load and restraint conditions of the central columns under the seismic loads, and the seismic performance curves of the columns under different vertical compression loads are obtained. Secondly, the pseudo-static pushover analysis of the soil-structure system is performed by using the improved pushover analysis method, and the seismic damage of the Daikai station and tunnel is reproduced under horizontal and vertical earthquake loads. The analysis results show that the horizontal and longitudinal spans of Daikai station are larger than those of the tunnel. The axial compression ratio of the central columns significantly increaseds, especially after considering the earthquake loads. The ordinary reinforced concrete columns of Daikai station are prone to brittle failure caused by insufficient deformation capacity. The concrete-filled steel tube structure is applied in the central columns of newly built Daikai station. Under the same load conditions, the newly built central column shows better bearing capacity and ductility performance, which greatly improves the safety performance of the station structure.
  • [1]
    NAKAMURA S, YOSHIDA N, IWATATE T. Damage to Daikai subway station during the 1995 Hyogoken-Nambu earthquake and its investigation[J]. Japan Society of Civil Engineers, Committee of Earthquake Engineering, 1996: 287-295.
    [2]
    ELNASHAI A S. Analysis of the damage potential of the Kocaeli (Turkey) earthquake of 17 August 1999[J]. Engineering Structures, 2000, 22(7): 746-754.
    [3]
    WANG W L, WANG T T, SU J J, et al. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake[J]. Tunnelling and Underground Space Technology, 2001, 16(3): 133-150.
    [4]
    LI T B. Damage to mountain tunnels related to the Wenchuan earthquake and some suggestions for aseismic tunnel construction[J]. Bulletin of Engineering Geology and the Environment, 2012, 71(2): 297-308.
    [5]
    IIDA H, HIROTO T, YOSHIDA N, et al. Damage to Daikai subway station[J]. Soils and Foundations, 1996, 36: 283-300.
    [6]
    IWATATE T, KOBAYASHI Y, KUSU H, et al. Investigation and shaking table tests of subway structures of the Hyogoken-Nanbu earthquake[C]//Proceedings of the 12th World Conference on Earthquake Engineering, 2000, Auckland.
    [7]
    矢的照夫, 梅原俊夫, 青木一二三, 等. 兵庫県南部地震による神戸高速鉄道・大開駅の被害とその要因分析[J]. 土木学会論文集, 1996(537): 303-320.

    YAMATO T, UMEHARA T, AOKI H, et al. Damge to Daikai subway station of Kobe rapid transit system and estimation of its reason during the 1995 Hyogoken-Nanbu earthquake[J]. Journal of JSCE, 1996(537): 303-320. (in Japanese)
    [8]
    AN X H, SHAWKY A A, MAEKAWA K. The collapse mechanism of a subway station during the Great Hanshin earthquake[J]. Cement and Concrete Composites, 1997, 19(3): 241-257.
    [9]
    HUO H. Seismic Design and Analysis of Rectangular Underground Structures[D]. West Lafayette: Purdue University, 2005.
    [10]
    庄海洋, 程绍革, 陈国兴. 阪神地震中大开地铁车站震害机制数值仿真分析[J]. 岩土力学, 2008, 29(1): 245-250.

    ZHUANG Hai-yang, CHENG Shao-ge, CHEN Guo-xing. Numerical simulation and analysis of earthquake damages of Dakai metro station caused by Kobe earthquake[J]. Rock and Soil Mechanics, 2008, 29(1): 245-250. (in Chinese)
    [11]
    LIU J, LIU X. Pushover analysis of Daikai subway station during the Osaka-Kobe earthquake in 1995[C]//The 14th World Conference on Earthquake Engineering, 2008, Beijing: 12-17.
    [12]
    刘祥庆. 地铁地下结构地震反应分析方法与实验研究[D]. 北京: 清华大学, 2008.

    LIU Xiang-qing. Research on Analysis Method and Experimental Study of Seismic Response of Underground Subway Structures[D]. Beijing: Tsinghua University, 2008. (in Chinese)
    [13]
    杜修力, 马超, 路德春, 等. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报, 2017, 50(1): 53-62, 69.

    DU Xiu-li, MA Chao, LU De-chun, et al. Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads[J]. China Civil Engineering Journal, 2017, 50(1): 53-62, 69. (in Chinese)
    [14]
    XU C S, ZHANG Z H, LI Y, et al. Validation of a numerical model based on dynamic centrifuge tests and studies on the earthquake damage mechanism of underground frame structures[J]. Tunnelling and Underground Space Technology, 2020, 104: 103538.
    [15]
    许紫刚. 地铁地下结构横断面抗震分析方法研究与减震技术初探[D]. 北京: 北京工业大学, 2020.

    XU Zi-gang. Research on Seismic Analysis Methods and Preliminary Study on Seismic Control Technologies of Subway Underground Structures in Transverse Cross Section[D]. Beijing: Beijing University of Technology, 2020. (in Chinese)
    [16]
    LIU J B, WANG W H, DASGUPTA G. Pushover analysis of underground structures: method and application[J]. Science China Technological Sciences, 2014, 57(2): 423-437.
    [17]
    杜修力, 许紫刚, 许成顺, 等. 浅埋地下结构地震反应分析的惯性力-位移法[J]. 岩土工程学报, 2018, 40(4): 583-591.

    DU Xiu-li, XU Zi-gang, XU Cheng-shun, et al. Inertia force-displacement method for seismic analysis of shallow buried underground structures[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 583-591. (in Chinese)
    [18]
    庄海洋. 土-地下结构非线性动力相互作用及其大型振动台试验研究[D]. 南京: 南京工业大学, 2006.

    ZHUANG Hai-yang. Study on Nonlinear Dynamic Soil-Underground Structure Interaction and Its Large-Size Shaking Table Test[D]. Nanjing: Nanjing University of Technology, 2006. (in Chinese)
    [19]
    庄海洋, 任佳伟, 王瑞, 等. 两层三跨框架式地铁地下车站结构弹塑性工作状态与抗震性能水平研究[J]. 岩土工程学报, 2019, 41(1): 131-138.

    ZHUANG Hai-yang, REN Jia-wei, WANG Rui, et al. Elasto-plastic working states and seismic performance levels of frame-type subway underground station with two layers and three spans[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 131-138. (in Chinese)
    [20]
    钟紫蓝, 申轶尧, 郝亚茹, 等. 基于IDA 方法的两层三跨地铁地下结构地震易损性分析[J]. 岩土工程学报, 2020, 42(5): 916-924.

    ZHONG Zi-lan, SHEN Yi-yao, HAO Ya-ru, et al. Seismic fragility analysis of two-story and three-span metro station structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 916-924. (in Chinese)
  • Cited by

    Periodical cited type(16)

    1. 孙冠华,王娇,于显杨,易琪,朱开源,王章星,耿璇,屈杰. 压缩空气储能电站地下内衬硐库基本原理与分析方法研究进展. 岩土力学. 2025(01): 1-25 .
    2. 傅丹,伍鹤皋,李鹏,张米高杨. 压气储能地下洞室密封钢衬-围岩之间循环接触传力行为的数值模拟. 太阳能学报. 2025(03): 25-33 .
    3. 蒋中明,甘露,张登祥,肖喆臻,廖峻慧. 压气储能地下储气库衬砌裂缝分布特征及演化规律研究. 岩土工程学报. 2024(01): 110-119 . 本站查看
    4. 阮泉泉,张文,张彬,王其宽,王汉勋,时广升. 不同洞距下内衬式高压储气库热-力特性分析. 隧道与地下工程灾害防治. 2024(01): 73-83 .
    5. 刘钦节,陈强,付强,吴犇牛,杨卿干. 过断层压气储能巷道围岩变形特征与支护优化. 安徽理工大学学报(自然科学版). 2024(02): 67-74 .
    6. 杨雪雯,任灏,廖泽球,王金玺,贾斌. 压缩空气储能地下人工洞室研究现状与展望. 南方能源建设. 2024(04): 54-64 .
    7. 贾宁,刘顺,王洪播. 压缩空气储能人工硐库热力耦合解析方法研究. 岩土力学. 2024(08): 2263-2278+2289 .
    8. 周小松,闫磊,黄康康,孙高博,刘卫. 圆形截面隧道式储气库群布局参数研究. 地下空间与工程学报. 2024(S1): 205-212 .
    9. 张国华,相月,王薪锦,熊峰,唐志成,华东杰. 压气储能地下内衬储气库结构荷载分担解析解及影响因素分析. 岩石力学与工程学报. 2024(S2): 3633-3650 .
    10. 蒋中明,刘宇婷,陆希,杨雪,廖峻慧,刘琛智,黄湘宜,周婉芬,石兆丰,田湘. 压气储能内衬硐室储气关键问题与设计要点评述. 岩土力学. 2024(12): 3491-3509 .
    11. 张国华,王薪锦,相月,潘佳,熊峰,华东杰,唐志成. 压缩空气硬岩储库关键问题研究进展:气密性能、热力过程与稳定性. 岩石力学与工程学报. 2024(11): 2601-2626 .
    12. 张国华,王薪锦,柯洪,相月,郭辉,熊峰,华东杰. 压气储能地下内衬储气库运行压力区间确定方法. 岩石力学与工程学报. 2024(12): 2874-2891 .
    13. 邓申缘,姜清辉,位伟. 基于循环硬化模型的压气硐库围岩力学及变形分析. 岩石力学与工程学报. 2024(12): 2980-2991 .
    14. 蔚立元,弭宪震,胡波文,李树忱,刘日成,叶继红. 内衬式岩洞储氢三维热-流-固耦合模型及洞群运营稳定性分析. 中国矿业大学学报. 2024(06): 1099-1116 .
    15. 杨雪雯. 压气储能电站地下人工洞室上覆岩体抗抬稳定影响因素分析. 内蒙古电力技术. 2024(06): 8-13 .
    16. 周小松,闫磊,黄康康,王颖蛟,申律. 圆形截面隧道式地下储气库容量研究. 科技创新与应用. 2023(30): 72-75 .

    Other cited types(9)

Catalog

    Article views PDF downloads Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return