• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DUAN Wei, CAI Guojun, ZHAO Zening, LIU Songyu, DONG Xiaoqiang. CPTU-based probabilistic model and evaluation method for liquefaction of sandy and silty soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 66-74. DOI: 10.11779/CJGE20210645
Citation: DUAN Wei, CAI Guojun, ZHAO Zening, LIU Songyu, DONG Xiaoqiang. CPTU-based probabilistic model and evaluation method for liquefaction of sandy and silty soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 66-74. DOI: 10.11779/CJGE20210645

CPTU-based probabilistic model and evaluation method for liquefaction of sandy and silty soils

More Information
  • Received Date: June 09, 2021
  • Available Online: February 03, 2023
  • Published Date: June 09, 2021
  • The liquefaction of cohesionless soils is closely related to the pore water pressure. The in situ testing technology, piezocone penetration test (CPTU) which can directly measure the pore water pressure, has unique advantages in liquefaction evaluation. In this study, a CPTU-based model for assessing the probability of liquefaction is derived by a rigorous mathematical method. The new probabilistic model is expressed in the form of a mapping function that relates the liquefaction probability mathematically to the factor of safety obtained from the CPTU-based deterministic model, which is established by the kernel extreme learning machine algorithm and the robust search technology. The new probabilistic model considers the inherent model uncertainty and parameter uncertainty, and makes a comparative analysis of the probabilistic model. The results show that the factor of safety (FS) of 1 yields a probability of liquefaction (PL) of 15.2%. The obvious advantage of the new model is that it directly uses the CPTU data, which is more suitable for the phenomenon of liquefaction behavior, and is suitable for sandy soil and silty soil. The new model can be used for liquefaction evaluation or preliminary screening without the need of additional sampling and laboratory testing. Finally, a liquefaction case of Tangshan earthquake in China is used to illustrate the application of the proposed probabilistic model considering the uncertainties of model and parameters.
  • [1]
    SEED H B, IDRISS I M. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(9): 1249-1273. doi: 10.1061/JSFEAQ.0001662
    [2]
    YOUD T L, IDRISS I M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 297-313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)
    [3]
    袁晓铭, 曹振中. 基于土层常规参数的液化发生概率计算公式及其可靠性研究[J]. 土木工程学报, 2014, 47(4): 99-108 doi: 10.15951/j.tmgcxb.2014.04.002

    YUAN Xiaoming, CAO Zhenzhong. Conventional soils parameters-based liquefaction probabilistic evaluation formula and its reliability analysis[J]. China Civil Engineering Journal, 2014, 47(4): 99-108. (in Chinese) doi: 10.15951/j.tmgcxb.2014.04.002
    [4]
    蔡国军, 刘松玉, 童立元, 等. 基于静力触探测试的国内外砂土液化判别方法[J]. 岩石力学与工程学报, 2008, 27(5): 1019-1027 doi: 10.3321/j.issn:1000-6915.2008.05.018

    CAI Guojun, LIU Songyu, TONG Liyuan, et al. Evaluation of liquefaction of sandy soils based on cone penetration test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 1019-1027. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.05.018
    [5]
    ROBERTSON P K, WRIDE C F. Evaluating cyclic liquefaction potential using the cone penetration test[J]. Canadian Geotechnical Journal, 1998, 35(3): 442-459. doi: 10.1139/t98-017
    [6]
    BOULANGER R W, IDRISS I M. CPT-based liquefaction triggering procedure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(2): 4015065. doi: 10.1061/(ASCE)GT.1943-5606.0001388
    [7]
    BRAY J D, SANCIO R B. Assessment of the liquefaction susceptibility of fine-grained soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(9): 1165-1177. doi: 10.1061/(ASCE)1090-0241(2006)132:9(1165)
    [8]
    DUAN W, CONGRESS S S C, CAI G J, et al. Empirical correlations of soil parameters based on piezocone penetration tests (CPTU) for Hong Kong-Zhuhai-Macau Bridge (HZMB) Project [J]. Transportation Geotechnics, 2021, 30: 100605. doi: 10.1016/j.trgeo.2021.100605
    [9]
    KU C S, JUANG C H, CHANG C W, et al. Probabilistic version of the Robertson and Wride method for liquefaction evaluation: development and application[J]. Canadian Geotechnical Journal, 2012, 49(1): 27-44. doi: 10.1139/t11-085
    [10]
    LIAO S S C, VENEZIANO D, WHITMAN R V. Regression models for evaluating liquefaction probability[J]. Journal of Geotechnical Engineering, 1988, 114(4): 389-411. doi: 10.1061/(ASCE)0733-9410(1988)114:4(389)
    [11]
    MOSS R E, SEED R B, KAYEN R E, et al. CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(8): 1032-1051. doi: 10.1061/(ASCE)1090-0241(2006)132:8(1032)
    [12]
    陈国兴, 李方明. 基于径向基函数神经网络模型的砂土液化概率判别方法[J]. 岩土工程学报, 2006, 28(3): 301-305 doi: 10.3321/j.issn:1000-4548.2006.03.004

    CHEN Guoxing, LI Fangming. Probabilistic estimation of sand liquefaction based on neural network model of radial basis function[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 301-305. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.03.004
    [13]
    JUANG C H, CHING J, KU C S, et al. Unified CPTu-based probabilistic model for assessing probability of liquefaction of sand and clay[J]. Géotechnique, 2012, 62(10): 877-892. doi: 10.1680/geot.9.P.025
    [14]
    JUANG C H, CHEN C H, MAYNE P W. CPTU simplified stress-based model for evaluating soil liquefaction potential[J]. Soils and Foundations, 2008, 48(6): 755-770. doi: 10.3208/sandf.48.755
    [15]
    HUANG G B. An insight into extreme learning machines: random neurons, random features and kernels[J]. Cognitive Computation, 2014, 6(3): 376-390. doi: 10.1007/s12559-014-9255-2
    [16]
    CETIN K O, SEED R B, DER KIUREGHIAN A, et al. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(12): 1314-1340. doi: 10.1061/(ASCE)1090-0241(2004)130:12(1314)
    [17]
    ZHAO Z N, DUAN W, CAI G J. A novel PSO-KELM based soil liquefaction potential evaluation system using CPT and Vs measurements[J]. Soil Dynamics and Earthquake Engineering, 2021, 150: 106930. doi: 10.1016/j.soildyn.2021.106930
    [18]
    CHEN C J, JUANG C H. Calibration of SPT- and CPT-based liquefaction evaluation methods[C]//Geo-Denver 2000. Denver: American Society of Civil Engineers, 2000: 49-64.
    [19]
    CHEN G X, KONG M Y, KHOSHNEVISAN S, et al. Calibration of Vs-based empirical models for assessing soil liquefaction potential using expanded database[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(2): 945-957. doi: 10.1007/s10064-017-1146-9
    [20]
    CAI G J, LIU S Y, PUPPALA A J. Liquefaction assessments using seismic piezocone penetration (SCPTU) test investigations in Tangshan region in China[J]. Soil Dynamics and Earthquake Engineering, 2012, 41: 141-150. doi: 10.1016/j.soildyn.2012.05.008
  • Other Related Supplements

  • Cited by

    Periodical cited type(6)

    1. 唐宇,阳军生,郑响凑,童甲修,汤冲. 高温富水隧道弱风化片麻岩力学特性试验研究. 岩石力学与工程学报. 2025(01): 128-139 .
    2. 马双泽,陈伟,吕聪聪,张塑彪,张帆. 高温与循环冷却对花岗岩抗剪强度影响试验研究. 矿业研究与开发. 2025(03): 137-147 .
    3. 王健翔,孙珍平,王士奎,许蕾. 高温作用后砂岩力学性能及裂纹演化特征研究. 金属矿山. 2025(04): 61-68 .
    4. 朱振南,王殿永,杨圣奇,解经宇,袁益龙,吴廷尧,田文岭,孙博文,田红,陈劲. 不同冷却速率下干热花岗岩渗透率演化特征对比研究. 岩石力学与工程学报. 2024(02): 385-398 .
    5. 周韬,范永林,陈家嵘,周昌台. 热损伤花岗岩力学劣化特性及损伤演化规律研究. 矿业科学学报. 2024(03): 351-360 .
    6. 何将福,任成程,何坤,余启航,李欣儒,邓旭. 循环热冲击花岗岩微观裂隙表征与渗透特性演化规律. 煤田地质与勘探. 2024(12): 131-142 .

    Other cited types(9)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return