• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Gui-tao, HAN Zhong, ZOU Wei-lie, WANG Xie-qun. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. DOI: 10.11779/CJGE202106018
Citation: ZHAO Gui-tao, HAN Zhong, ZOU Wei-lie, WANG Xie-qun. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. DOI: 10.11779/CJGE202106018

Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil

More Information
  • Received Date: August 31, 2020
  • Available Online: December 02, 2022
  • The effects of freeze-thaw (FT), drying-wetting (DW) and alternative drying-wetting-freeze-thaw (DWFT) cycles on the micro-structure, soil-water characteristic curve (SWCC) and soil shrinkage characteristic curve (SSCC) of a compacted expansive soil are investigated. The experimental results show that the three investigated cyclic treatments significantly change the macro-pore system of soil. The macro-pores formed during compaction disappear during DW cycles while visible cracks are introduced. FT cycles induce invisible micro-cracks, and macro- and micro-cracks are both discovered in DWFT specimens. Macro- and micro-cracks significantly reduce the water retention capacity of soil in the low suction range and the amount of shrinkage from saturated condition to oven dryness. They have no influences on the SWCC in the high suction range and the shrinkage limit and plastic limit of soil. The slope of the SSCC at the proportional and residual shrinkage stages decreases after FT and DWFT cycles but remains constant after DW cycles. The relationships among moisture content, void ratio and suction of soil after different FT, DW and DWFT cycles are distributed on a unique surface which can be reasonably described by the proposed modified model. This study is useful for understanding the hydro-mechanical behavior of expansive soil under the influences of environmental factors.
  • [1]
    刘特洪. 工程建设中的膨胀土问题[M]. 北京: 中国建筑工业出版社, 1997.

    LIU Te-hong. Expansive Soil Problems in Engineering Construction[M]. Beijing: China Building Industry Press, 1997. (in Chinese)
    [2]
    ALONSO E E, GENS A, HIGHT D W. Special problems soils. General Report[C]//9th European Conference on Soil Mechanics and Foundations Engineering, 1987, Dublin: 1087-1146.
    [3]
    张泽, 马巍, 齐吉琳. 冻融循环作用下土体结构演化规律及其工程性质改变机理[J]. 吉林大学学报:地球科学版, 2013, 43(6): 1904-1914. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306021.htm

    ZHANG Ze, MA Wei, QI Ji-lin. Structure evolution and mechanism of engineering properties change of soils under effect of freeze-thaw cycle[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(6): 1904-1914. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306021.htm
    [4]
    赵鲁庆, 杨更社, 吴迪, 等. 冻融黄土微观结构变化规律及分形特性研究[J]. 地下空间与工程学报, 2019, 15(6): 1680-1690. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201906012.htm

    ZHAO Lu-qing, YANG Geng-she, WU Di, et al. Micro structure and fractal characteristics loess under freeze-thaw cycles[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(6): 1680-1690. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201906012.htm
    [5]
    刘红军, 郭颖, 单炜, 等. 土质路堑边坡冻融失稳及植被护坡机理研究[J]. 岩土工程学报, 2011, 33(8): 1197-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108010.htm

    LIU Hong-jun, GUO Ying, SHAN Wei, et al. Instability of soil cutting slopes caused by freeze-thaw and reinforcement mechanism by vegetation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1197-1203. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108010.htm
    [6]
    FREDLUND D G. State of practice for use of the soil-water characteristic curve (SWCC) in geotechnical engineering[J]. Canadian Geotechnical Journal, 2019, 56: 1059-1069. doi: 10.1139/cgj-2018-0434
    [7]
    WHITE N F, DUKE H R, SUNADA D K, et al. Physics of desaturation in porous materials[J]. Journal of the Irrigation and Drainage Division, ASCE, 1970, 96(IR2): 165-191.
    [8]
    VANAPALLI S K, FREDLUND D G, PUFAHL D E. The influence of soil structure and stress history on the soil-water characteristics of a compacted till[J]. Géotechnique, 1999, 49(2): 143-159. doi: 10.1680/geot.1999.49.2.143
    [9]
    唐朝生, 施斌, 崔玉军. 高放废物地质处置库中缓冲回填材料的收缩特征[J]. 岩土工程学报, 2012, 34(7): 1192-1200. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207005.htm

    TANG Chao-sheng, SHI Bin, CUI Yu-jun. Shrinkage characteristics of buffer-backfilling materials in high-level radioactive waste geological disposal[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1192-1200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207005.htm
    [10]
    GROENEVELT P H, GRANT C D. Re-evaluation of the structural properties of some British swelling soils[J]. European Journal of Soil Science, 2001, 52(3): 469-477. doi: 10.1046/j.1365-2389.2001.00388.x
    [11]
    叶为民, 万敏, 陈宝, 等. 干湿循环条件下高压实膨润土的微观结构特征[J]. 岩土工程学报, 2011, 33(8): 1173-1177. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108006.htm

    YE Wei-min, WAN Min, CHEN Bao, et al. Micro-structural behaviors of densely compacted GMZ01 bentonite under drying/wetting cycles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1173-1177. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108006.htm
    [12]
    魏星, 王刚. 干湿循环作用下击实膨胀土胀缩变形模拟[J]. 岩土工程学报, 2014, 36(8): 1423-1431. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201408008.htm

    WEI Xing, WANG Gang. Modeling swell-shrink behavior of compacted expansive clays subjected to cyclic drying and wetting[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1423-1431. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201408008.htm
    [13]
    LIU G, TOLL D G, KONG L, et al. Matric suction and volume characteristics of compacted clay soil under drying and wetting cycles[J]. Geotechnical Testing Journal, 2020, 43(2): 464-479.
    [14]
    王铁行, 杨涛, 鲁洁. 干密度及冻融循环对黄土渗透性的各向异性影响[J]. 岩土力学, 2016, 37(增刊1): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1009.htm

    WANG Tie-hang, YANG Tao, LU Jie. Influence of dry density and freezing-thawing cycles on anisotropic permeability of loess[J]. Rock and Soil Mechanics, 2016, 37(S1): 72-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1009.htm
    [15]
    许雷, 刘斯宏, 鲁洋, 等. 冻融循环下膨胀土物理力学特性研究[J]. 岩土力学, 2016, 37(增刊2): 167-174. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2020.htm

    XU Lei, LIU Si-hong, LU Yang, et al. Physico-mechanical properties of expansive soil under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2016, 37(S2): 167-174. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2020.htm
    [16]
    王海涛, 张远芳, 成峰, 等. 冻融循环作用下盐渍土抗剪强度变化规律研究[J]. 地下空间与工程学报, 2016, 12(5): 1271-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201605020.htm

    WANG Hai-tao, ZHANG Yuan-fang, CHENG Feng, et al. Study on the shear strength change laws of the saline soil subjected to freeze-thaw cycle[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(5): 1271-1276. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201605020.htm
    [17]
    孙德安, 张俊然, 吕海波. 全吸力范围南阳膨胀土的土-水特征曲线[J]. 岩土力学, 2013, 34(7): 1839-1846. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201307004.htm

    SUN De-an, ZHANG Jun-ran, LÜ Hai-bo. Soil-water characteristic curve of Nanyang expansive soil in full suction range[J]. Rock and Soil Mechanics, 2013, 34(7): 1839-1846. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201307004.htm
    [18]
    CORNELIS W M, CORLUY J, MEDINA H, et al. A simplified parametric model to descibe the magnitude and geometry of soil shrinkage[J]. European Journal of Soil Science, 2006, 57(2): 258-268.
    [19]
    FREDLUND D G, XING A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532.
    [20]
    GALLIPOLI D, WHEELER S J, KARSTUNEN M. Modelling of variation of degree of saturation in a deformable unsaturated soil[J]. Géotechnique, 2003, 53(1): 105-112.
  • Related Articles

    [1]YANG Xu, CAI Guoqing, LIU Qianqian, LI Fengzeng, SHAN Yepeng. Experimental study on influences of wetting-drying cycles on microstructure and water-retention characteristics of clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 11-15. DOI: 10.11779/CJGE2024S20006
    [2]HUANG Chun-xia, HUANG Min, CAI Wei, CHEN Guo-xing, LIU Chang, ZHANG Yan-mei. Microstructure of silt with different clay contents[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 758-764. DOI: 10.11779/CJGE202004020
    [3]JIANG Ming-jing, LI Zhi-yuan, HUANG He-peng, LIU Jun. Experimental study on microstructure and mechanical properties of seabed soft soil from South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 17-20. DOI: 10.11779/CJGE2017S2005
    [4]ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444.
    [5]CHEN Yu-long. Microstructure of expansive soil from Yunnan Province[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 334-339.
    [6]Microstructural change of soft clay before and after one-dimensional compression creep[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1688-1694.
    [7]TANG Chaosheng, SHI Bin, WANG Baojun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 560-565.
    [8]ZHOU Cuiying, MU Chunmei. Analysis on effective radius of gravel piles reinforcement in soft soil foundations based on microstructure[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 755-758.
    [9]WANG Baojun, SHI Bin, LIU Zhibin, CAI Yi. Fractal study on microstructure of clayey soil by GIS[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 244-247.
    [10]Shi Bin. Quantitative  Assessment  of  Changes  of  Microstructure  for  Clayey  Soil  in  the  Process  of  Compaction[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 60-65.
  • Cited by

    Periodical cited type(13)

    1. 满轲,柳宗旭,商艳,宋志飞,刘晓丽,苏宝. 基于灰色关联分析下深度学习盾构姿态预测模型. 工程科学与技术. 2025(02): 203-213 .
    2. 满轲,曹子祥,刘晓丽,宋志飞,柳宗旭,刘汭琳,武立文. 地质突变条件下基于组合模型的围岩等级和TBM掘进参数预测. 河海大学学报(自然科学版). 2024(01): 55-62 .
    3. 邓志兴,谢康,李泰灃,苏谦,韩征,肖宪普. 基于机器学习的高铁边坡位移预测不确定性度量与应用. 中国铁道科学. 2024(01): 56-67 .
    4. 姜浩,郑亚强,金治军,马庆,董强,郑德焰,林峰,赵炳武. 基于ANN算法的钢结构安装工程质量状态评价. 化工管理. 2024(06): 102-109 .
    5. 郝晶晶,段鹏鑫,陈雨欣,段晓晨. 基于IGWO-SVR的地铁车站投资预测. 铁道学报. 2024(05): 179-188 .
    6. 张洁. 新疆超长隧洞TBM智能掘进施工方法研究. 黑龙江水利科技. 2024(08): 123-125 .
    7. 林平,李有鹏,谭彬. 基于Bootstrap方法和LSSVM模型的滑坡位移区间预测. 测绘与空间地理信息. 2024(09): 48-51+56 .
    8. 张琦,甘超,曹卫华. 大洋钻探过程钻速在线区间预测方法——以微型钻探船室内模拟实验为例. 钻探工程. 2024(05): 45-52 .
    9. 赵高峰,姜宝元,芮福鑫,马洪素,李洁勇,赵晓豹,龚秋明. 基于数值仿真的复杂岩体TBM掘进性能评估模型. 中南大学学报(自然科学版). 2023(03): 984-997 .
    10. 常建涛,乔子萱,孔宪光,杨胜康,罗才文. 多维非线性特征重构与融合的复杂产品工期预测方法. 机械工程学报. 2023(06): 294-308 .
    11. 禹海涛,朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析. 隧道与地下工程灾害防治. 2023(03): 19-26 .
    12. 彭继慎,郝茗,宋立业,李希桐. 基于TSSA-SVR算法的TBM掘进速度预测. 辽宁工程技术大学学报(自然科学版). 2023(05): 634-640 .
    13. 闫静,张雪英,李凤莲,陈桂军,黄丽霞. 结合栈式监督AE与可变加权ELM的回归预测模型. 计算机工程. 2022(08): 62-69+76 .

    Other cited types(11)

Catalog

    Article views (485) PDF downloads (233) Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return