WU Xiao-tian, XU Yong-fu. Undrained unified solutions to cylindrical cavity expansion in soils and sands based on CSUH model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1019-1028. DOI: 10.11779/CJGE202106005
    Citation: WU Xiao-tian, XU Yong-fu. Undrained unified solutions to cylindrical cavity expansion in soils and sands based on CSUH model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1019-1028. DOI: 10.11779/CJGE202106005

    Undrained unified solutions to cylindrical cavity expansion in soils and sands based on CSUH model

    More Information
    • Received Date: May 31, 2020
    • Available Online: December 02, 2022
    • The current solutions to cylindrical cavity expansion cannot properly consider the mechanical properties of dense sand and overconsolidated soil. Therefore, there is some discrepency between the solution and the practical situation. In addition, there are few answers that can describe the expansion of undrained expansion in sand and clay uniformly. Based on the CSUH model, the elastoplastic matrix and the governing equations for undrained cylindrical cavity expansion are proposed. Based on the boundary conditions, the exact solutions to the governing equations are obtained numerically. The results show that the predicted results capture the stress−strain relationship more reasonably, including liquefaction, shear dilatancy, strain-hardening and softening, damping of dense state and overconsolidation ratio. Therefore, the proposed approach can reasonably simulate the variation laws of stress field and strain field during the expansion process in dense sand and overconsolidated soil.
    • [1]
      VESIC A S. Expansion of cavities in infinite soil mass[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(SM3): 265-269.
      [2]
      RANDOLPH M F, CARTER J P, WROTH C P. Driven piles in clay-the effects of installation and subsequent consolidation[J]. Géotechnique, 1979, 29(4): 361-393. doi: 10.1680/geot.1979.29.4.361
      [3]
      SHEN S L, MIURA N, KOGA H. Interaction mechanism between deep mixing column and surrounding clay during installation[J]. Can Geotech J, 2003, 40(2): 293-307. doi: 10.1139/t02-109
      [4]
      SALGADO R, MITECHELL J K, JAMIOLKOWSKI M B. Cavity expansion and penetration resistance in sand[J]. Journal of Geotechnical and Geoenviromental Engineering, ASCE, 1997, 123(4): 344-354. doi: 10.1061/(ASCE)1090-0241(1997)123:4(344)
      [5]
      CHANG M F, TEH C I, CAO L F. Undrained cavity expansion in modified Cam clay II: application to the interpretation of the piezocone test[J]. Géotechnique, 2001, 51(4): 335-350. doi: 10.1680/geot.2001.51.4.335
      [6]
      CARTER J P, BOOKER J R, YEUNG S K. Cavity expansion in cohesive frictional soils[J]. Geotechnique, 1986, 36(3): 349-358. doi: 10.1680/geot.1986.36.3.349
      [7]
      YU H S, HOULSBY G T. Finite cavity expansion in dilatants soils: loading analysis[J]. Géotechnique, 1991, 41(2): 173-183. doi: 10.1680/geot.1991.41.2.173
      [8]
      MANTARAS F M, SCHNAID F. Cylindrical cavity expansion in dilatant cohesive-frictional materials[J]. Géotechnique, 2002, 52(5): 337-348. doi: 10.1680/geot.2002.52.5.337
      [9]
      CAO L F, TEH CI, CHANG M F. Undrained cavity expansionin modified Cam clay I: theoretical analysis[J]. Géotechnique, 2001, 51(4): 323-334. doi: 10.1680/geot.2001.51.4.323
      [10]
      CAO L F, TEH C I, CHANG M F. Analysis of undrained cavity expansion in elasto-plastic soils with non-linear elasticity[J]. Int J Numer Anal Meth Geomech, 2002, 26(1): 25-52. doi: 10.1002/nag.189
      [11]
      SILVESTRI V, ABOU-SAMRA G. Application of the exact constitutive relationship of modified Cam clay to the undrained expansion of a spherical cavity[J]. Int J Numer Analyt Meth Geomech, 2011, 35(1): 53-66. doi: 10.1002/nag.892
      [12]
      VINCENZO S, GHASSAN A S. Analytical solution for undrained plane strain expansion of a cylindrical cavity in modified cam clay[J]. Geomech Eng, 2012, 4(1): 19-37. doi: 10.12989/gae.2012.4.1.019
      [13]
      CHEN S L, ABOUSLEIMAN Y N. Exact undrained elasto-plastic solution for cylindrical cavity expansion in modified Cam clay soil[J]. Géotechnique, 2012, 62(5): 447-456. doi: 10.1680/geot.11.P.027
      [14]
      CHEN S L, ABOUSLEIMAN Y N. Exact drained solution for cylindrical cavity expansion in modified Cam clay soil[J]. Géotechnique, 2013, 63(6): 510-517. doi: 10.1680/geot.11.P.088
      [15]
      ZHOU H, LIU H L, KONG G Q. Analytical solution of undrained cylindrical cavity expansion in saturated soil under anisotropic initial stress[J]. Comput and Geotech, 2014, 55: 232-239. doi: 10.1016/j.compgeo.2013.09.011
      [16]
      ZHOW H, LIU H L, ZHA Y H, et al. A general semi-analytical solution for consolidation around an expanded cylindrical and spherical cavity in modified Cam Clay[J]. Comput and Geotech, 2017, 91: 71-81. doi: 10.1016/j.compgeo.2017.07.005
      [17]
      李镜培, 唐剑华, 李林, 等. 饱和黏土中柱孔三维弹塑性扩张机制研究[J]. 岩石力学与工程学报, 2016, 35(2): 378-386. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602019.htm

      LI Jing-pei, TANG Jian-hua, LI Lin, et al. Mechanism of three dimensional elastic-plastic expansion of cylindrical cavity in saturated clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 378-386. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602019.htm
      [18]
      LI L, LI J P, SUN D A. Anisotropically elasto-plastic solution to undrained cylindrical cavity expansion in K0-consolidated clay[J]. Comput and Geotech, 2016, 73: 83-90. doi: 10.1016/j.compgeo.2015.11.022
      [19]
      LI J P, GONG W B, LI L, et al. Drained elastoplastic solution for cylindrical cavity expansion in K0-consolidated anisotropic soil[J]. J Eng Mech, 2017, 143(11): 04017133.
      [20]
      CHEN S L, LIU K. Undrained cylindrical cavity expansion in anisotropic critical state soils[J]. Géotechnique, 2019, 69(3): 189-202. doi: 10.1680/jgeot.16.P.335
      [21]
      LIU K, CHEN S L. Analysis of cylindrical cavity expansion in anisotropic critical state soils under drained conditions[J]. Can Geotech J, 2019, 56(5): 675-686. doi: 10.1139/cgj-2018-0025
      [22]
      CHEN H H, LI L, LI J P, et al. Elastoplastic solution to drained expansion of a cylindrical cavity in anisotropic critical-state soils[J]. J Eng Mech, 2020, 146(5): 04020036.
      [23]
      CHEN H H, LI L, LI J P. Stress transform method to undrained and drained expansion of a cylindrical cavity in anisotropic modified Cam-Clay soils[J]. Comput and Geotech, 2019, 106: 128-142. doi: 10.1016/j.compgeo.2018.10.016
      [24]
      SUN D A, SHENG D, SLOAN S W. Elastoplastic modeling of hydraulic and stress-strain behaviour of unsaturated soils[J]. Mechanics of Materials, 2007, 39(3): 212-221. doi: 10.1016/j.mechmat.2006.05.002
      [25]
      YAO Y P, LIU L, LUO T, et al. Unified hardening (UH)model for clays and sands[J]. Comput and Geotech, 2019, 110: 326-343. doi: 10.1016/j.compgeo.2019.02.024
      [26]
      YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
      [27]
      YAO Y P, GAO Z W, ZHAO J D, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic Hvorslev envelope[J]. J Geotech Geoenviron Eng, 2012, 138(7): 860-868. doi: 10.1061/(ASCE)GT.1943-5606.0000649
      [28]
      MATSUOKA H, SUN D A. The SMP Concept-Based 3D Constitutive Models for Geomaterials[M]. Taylor and Francis, 2006.
      [29]
      姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 35(2): 193-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm

      YAO Yang-ping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 35(2): 193-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm
      [30]
      VERDUGO R, ISHIHARA K. The steady state of sandy soils[J]. Soils Found, 1996, 36(2): 81-91. doi: 10.3208/sandf.36.2_81
      [31]
      ISHIHARA K. Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1993, 43(3): 351-415. doi: 10.1680/geot.1993.43.3.351
    • Cited by

      Periodical cited type(6)

      1. 王卫东,高文生,龚维明,林毅峰,刘永超,吴江斌. 基础工程技术的发展与创新. 土木工程学报. 2025(02): 97-117 .
      2. 邱尚印,吴君涛,耿少寒,王奎华,黄山,干钢. 带扩大桩靴桩侧同步灌浆预制桩承载力计算分析. 土木工程学报. 2025(05): 79-91 .
      3. 马鹏程,刘润,李国和,苏伟,施威,蒋成强. 成层土中长桩竖向承载激发规律研究. 河北工程大学学报(自然科学版). 2024(02): 23-29 .
      4. 柳鸿博,戴国亮,周凤玺,龚志宇,陈智伟. 黏弹性非饱和土中劲性复合桩纵向动力响应分析. 岩土力学. 2024(05): 1365-1377+1387 .
      5. 赵宇,张浩,江磊,王伟. 桩板式路基引扩孔灌浆后植入桩的承载特性. 公路交通科技. 2024(06): 56-64 .
      6. 张浩,赵宇,王中,刘维正. 芯桩承载扩体预制桩的荷载传递计算分析. 岩土工程学报. 2024(12): 2503-2512 . 本站查看

      Other cited types(5)

    Catalog

      Article views (317) PDF downloads (207) Cited by(11)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return