• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HAN Zhuo-wei, LIN Hai, SHI Jian-yong. Shear characteristics of hydrated needle-punched GCL+GM composite liners at different temperatures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 962-967. DOI: 10.11779/CJGE202105022
Citation: HAN Zhuo-wei, LIN Hai, SHI Jian-yong. Shear characteristics of hydrated needle-punched GCL+GM composite liners at different temperatures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 962-967. DOI: 10.11779/CJGE202105022

Shear characteristics of hydrated needle-punched GCL+GM composite liners at different temperatures

More Information
  • Received Date: May 07, 2020
  • Available Online: December 04, 2022
  • The composite liner consisting of needle-punched GCL and textured geomembrane (GM) is widely used, and changing temperature environment can be encountered when it is used to deal with mining-smelting waste or municipal solid waste. Aiming at the temperature effect of the shear strength of the composite liner, the large-scale temperature-controlled water-bath direct shear apparatus is used to carry out the whole shear tests without pre-determined failure surface for the hydrated needle-punched GCL+GM composite liner at different temperatures. The shear strengths of the composite liner in the range of 10℃~70℃ are obtained, and the shear characteristics of the composite liner under different temperatures as well as normal stress are revealed. The test results show that obvious peak strengths and obvious post-peak softening phenomena occur at the stress–displacement curve at all the test temperatures. The peak shear strength and large-displacement shear resistance of the composite liner achieve the maximum value at the room temperature of about 20℃, and either increasing or decreasing temperature can cause obvious reduction in the shear strength of the composite liner. The change of temperature has a significant effect on the shear strength and failure modes of the composite liner, and accordingly attention should be paid to the temperature effect on the stability of slopes containing geosynthetics.
  • [1]
    钱学德, 施建勇, 刘晓东. 现代卫生填埋场的设计与施工[M]. 北京: 中国建筑工业出版社, 2011.

    QIAN Xue-de, SHI Jian-yong, LIU Xiao-dong. Design and Construction of Modern Sanitary Landfills[M]. Beijing: China Architecture and Building Press, 2011. (in Chinese)
    [2]
    FOX P J, SURA J M, NYE C J. Dynamic shear strength of a needle-punched GCL for monotonic loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(7): 04015025. doi: 10.1061/(ASCE)GT.1943-5606.0001304
    [3]
    TOUZE-FOLTZ N, BANNOUR H, BARRAL C, et al. A review of the performance of geosynthetics for environmental protection[J]. Geotextiles and Geomembranes, 2016, 44: 656-672 doi: 10.1016/j.geotexmem.2016.05.008
    [4]
    FOX P J, STARK T D. State-of-the-art report: GCL shear strength and its measurement ten-year update[J]. Geosynthetics International, 2015, 22(1): 3-47. doi: 10.1680/gein.14.00030
    [5]
    张宏伟, 林伟岸, 詹良通, 等. 土工膜/GCL 界面剪切强度特性的试验研究[J]. 土木工程学报, 2013, 46(2): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201302015.htm

    ZHANG Hong-wei, LIN Wei-an, ZHAN Liang-tong, et al. Experiment study on shear strength of GM/GCL interface[J]. China Civil Engineering Journal, 2013, 46(2): 123-130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201302015.htm
    [6]
    林海, 章玲玲, 刘小文, 等. 水化针刺GCL+GM复合衬里的单剪破坏特征[J]. 岩土工程学报, 2016, 38(9): 1660-1667. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609016.htm

    LIN Hai, ZHANG Ling-ling, RUAN Xiao-bo, et al. Simple-shear failure characteristics of hydrated needle- punched GCL+GM composite liner[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1660-1667. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609016.htm
    [7]
    林海, 施建勇, 钱学德. 水化针刺GCL剪切破坏机理的试验研究[J]. 岩土工程学报, 2017, 39(8): 1374-1380. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708005.htm

    LIN Hai, SHI Jian-yong, QIAN Xue-de. Experimental research on shear failure mechanism of hydrated needle-punched GCLs[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1374-1380. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708005.htm
    [8]
    YESILLER N, HANSON, J L, YEE E H. Waste heat generation: a comprehensive review[J]. Waste Management, 2015, 42(5): 116-179.
    [9]
    Jafaria NAVID H, Stark TIMOTHY D, Thalhamerc TODD. Spatial and temporal characteristics of elevated temperatures in municipal solid waste landfills[J]. Waste Management, 2017, 59(1): 286-301.
    [10]
    KOERNER G R, KOERNER R M. Long-term temperature monitoring of geomembranes at dry and wet landfills[J]. Geotextiles and Geomembranes, 2006, 24(2): 72-77.
    [11]
    HANSON J L, CHRYSOVERGIS T S, YESILLER N, et al. Temperature and moisture effects on GCL and textured geomembrane interface shear strength[J]. Geosynthetics International, 2015, 22(1): 110-124. doi: 10.1680/gein.14.00035
    [12]
    STARK T D, MARTIN J W, GERBASI G T, et al. Aluminum waste reaction indicators in a municipal solid waste landfill[J]. Geotechnical and Geoenvironmental Engineering, 2012, 138(3): 252-261. doi: 10.1061/(ASCE)GT.1943-5606.0000581
    [13]
    LISTYARINI S. Designing heap leaching for nickel production that environmentally and economically sustain[J]. International Journal of Environmental Science and Development, 2017, 8(12): 799-803.
    [14]
    AKPINAR M V, BENSON C H. Effect of temperature on shear strength of two geomembrane-geotextile interfaces[J]. Geotextiles and Geomembranes, 2005, 23: 443-453.
    [15]
    GHAZIZADEH S, BAREITHER C A. Stress-controlled direct shear testing of geosynthetic clay liners II: assessment of shear behavior[J]. Geotextiles and Geomembranes, 2018, 46(5): 667-677.
    [16]
    GHAZIZADEH S, BAREITHER C A. Temperature effects on the peak and large-displacement shear strength of needle-punched reinforced GCLs[C]//Geosynthetics 2019, 2019, At Houston.
    [17]
    GHAZIZADEH S, BAREITHER C A. Temperature- Dependent shear behavior of geosynthetic clay liners[J]. Geotechnical Frontiers, 2017, 280(3): 288-298.
    [18]
    BAREITHER C A, SOLEIMANIAN M, GHAZIZADEH S. Direct shear testing of GCLs at elevated temperature and in a non-standard solution[J]. Geosynthetics International, 2018, 25(3): 350-368.
  • Cited by

    Periodical cited type(9)

    1. 宋泽宇,蒲力,马云飞. 含有机质黏土全吸力范围内土-水特征曲线试验研究. 水力发电. 2024(10): 114-118 .
    2. 童富果,蔡文婧,薛松,刘刚,李东奇. 基于孔隙分形特征的水泥基毛细吸力预测模型. 水利水电科技进展. 2024(06): 27-33 .
    3. 幸锦雯,孙文,余光耀,徐娜,麻建宏. 基于核磁共振及分形理论预测非饱和土石混合体SWCC. 水利水电技术(中英文). 2023(10): 180-189 .
    4. 王海曼,倪万魁. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学. 2022(03): 729-736 .
    5. 魏小棋,陈盼. 压实延安黄土土-水特性及快速测定方法探讨. 土工基础. 2022(03): 446-450 .
    6. 王海曼,倪万魁,刘魁. 延安压实黄土土-水特征曲线的快速预测方法. 岩土力学. 2022(07): 1845-1853 .
    7. 刘莉,姜大伟,于明波,颜荣涛,于海浩,陈波. 千枚岩全风化土的持水特性研究. 河南科技大学学报(自然科学版). 2022(06): 53-58+8 .
    8. 高世壮,薛善彬,张鹏,李春云,王俊洁. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响. 复合材料学报. 2022(10): 4778-4787 .
    9. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看

    Other cited types(14)

Catalog

    Article views PDF downloads Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return